KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » Билл Брайсон - Краткая история почти всего на свете

Билл Брайсон - Краткая история почти всего на свете

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Билл Брайсон, "Краткая история почти всего на свете" бесплатно, без регистрации.
Перейти на страницу:

Прервемся на минутку и рассмотрим строение атома, как оно представляется теперь. Каждый атом состоит из трех видов элементарных частиц: протонов, несущих положительный электрический заряд, отрицательно заряженных электронов и нейтронов, которые не несут никакого заряда. Протоны и нейтроны плотно упакованы в ядро, а электроны обращаются вокруг него. Химическую индивидуальность дает атомам количество протонов. Атом с одним протоном — это атом водорода, с двумя — атом гелия, с тремя — лития и так далее по таблице. Добавляя протон, вы каждый раз получаете новый элемент. (Ввиду того, что число протонов в атоме всегда уравновешивается равным числом электронов, иногда можно прочесть, что элемент определяется количеством электронов, что, в сущности, одно и то же. Как мне объяснили, протоны придают атому индивидуальность, а электроны определяют его личность.)

Нейтроны не влияют на идентичность атома, но увеличивают его массу. Число нейтронов обычно примерно такое же, как и протонов, хотя может несколько отличаться в ту или иную сторону. Добавьте или убавьте нейтрон-другой, и вы получите изотоп. Обозначения, которые вы встречаете в связи с датированием пород в археологии, относятся к изотопам, например, термин «углерод-14» означает атом углерода с 6 протонами и 8 нейтронами (в сумме получается 14).

Нейтроны и протоны занимают ядро атома. Оно совсем крошечное — всего одна миллионная миллиардной части полного объема атома, — но фантастически плотное, поскольку содержит практически всю массу атома. Как писал Кроппер, если атом увеличить до размеров собора, ядро будет всего лишь размером с муху, но эта муха будет во много тысяч раз тяжелее собора. Именно эта обширность, эта невообразимая, потрясающая вместительность атома заставили Резерфорда в 1910 году чесать в затылке.

По сей день у многих вызывает удивление мысль о том, что атомы в основном представляют собой пустое пространство, и твердость окружающих нас тел — не более чем иллюзия. Когда в реальном мире друг с другом сближаются два тела — чаще всего в качестве иллюстрации берут биллиардные шары, — они на самом деле не ударяются друг о друга. «Правильнее сказать, — поясняет Тимоти Феррис,[132] — что отрицательные заряды обоих шаров взаимно отталкиваются… Не будь у них электрических зарядов, они могли бы, подобно галактикам, беспрепятственно пройти сквозь друг друга». Сидя на стуле, вы на самом деле не сидите на нем, а висите над ним на высоте одного ангстрема (стомиллионная доля сантиметра), ваши электроны и электроны стула отчаянно противятся любой более тесной близости.

Рисунок атома, как его представляют почти все, состоит из одного-двух электронов, которые обращаются вокруг ядра, наподобие планет, вращающихся вокруг Солнца. Это изображение было создано в 1904 году японским физиком Хантаро Нагаока на основе не более чем догадки. Оно абсолютно неверно, но все равно надолго сохранилось. Как не раз отмечал Айзек Азимов,[133] оно вдохновляло поколения писателей-фантастов на создание произведений о мирах внутри миров, в которых атомы становятся маленькими обитаемыми солнечными системами или наша Солнечная система оказывается всего лишь пылинкой в значительно более крупной системе. Даже сегодня Европейский центр ядерных исследований (ЦЕРН) использует созданное Нагаокой изображение в качестве эмблемы своего сайта в Интернете.[134] На самом деле, как вскоре поняли физики, электроны совсем не похожи на вращающиеся по орбитам планеты, а больше напоминают лопасти крутящегося вентилятора, умудряясь одновременно заполнять каждый кусочек пространства на своих орбитах (с одной существенной разницей, что если лопасти вентилятора только кажутся находящимися одновременно везде, электроны действительно находятся сразу всюду).

Стоит ли говорить, что очень немногое из этого было понятно в 1910 году или даже годы спустя. Открытие Резерфорда поставило рад крупных неотложных проблем. Не последняя среди них состояла в том, что электроны не могут обращаться вокруг ядра, не падая на него. По законам традиционной электродинамики электрон при вращении должен очень быстро — практически мгновенно — израсходовать свою энергию и по спирали упасть на ядро с гибельными последствиями для них обоих. Была также проблема: каким образом протоны с их положительными зарядами могут быть связаны друг с другом внутри ядра, не разорвав на куски самих себя и весь атом. Становилось ясно, что все происходящее там, в мире очень малого, не подчиняется законам макромира, которые мы берем за основу.

По мере того как физики углублялись в субатомное царство, они начинали понимать, что его реальность не только отличается от всего, что нам известно, но и от всего, что вообще можно себе представить. «Поскольку поведение атома столь сильно отличается от нашего повседневного опыта, — заметил однажды Ричард Фейнман, — очень трудно к этому привыкнуть, и оно представляется необычным и загадочным каждому в равной мере, как начинающему, так и опытному физику». Когда Фейнман высказывался по этому поводу, у физиков уже было полвека, чтобы приспособиться к странностям поведения атомов. Представьте, что должен был испытывать Резерфорд и его коллеги в начале 1910-х годов, когда все это было совершенно новым и неизведанным.

Одним из сотрудников Резерфорда был мягкий обходительный датчанин Нильс Бор. В 1913 году Бору, бившемуся над строением атома, пришла в голову идея, настолько взволновавшая его, что он отложил медовый месяц и сел за написание статьи, которая стала поворотным пунктом в науке.

Поскольку физики не могли видеть столь малые объекты, как атомы, им приходилось делать выводы об их строении, наблюдая, как они реагируют на различные воздействия. Так, например, Резерфорд обстреливал фольгу альфа-частицами. Неудивительно, что иногда результаты таких экспериментов вызывали новые вопросы. Одной из загадок долгое время были особенности спектра водорода. Вид этого спектра говорил о том, что атомы водорода излучают энергию на определенных длинах волн и не проявляются на других. Будто кто-то находящийся под наблюдением обнаруживается то в одном, то в другом месте, но ни разу не был замечен в движении между ними. Никто не мог понять, почему так происходит.

Ломая голову над этой проблемой, Бор неожиданно наткнулся на решение и поспешил изложить его в своей знаменитой статье, озаглавленной «О строении атомов и молекул». В ней объяснялось, как электроны могут удержаться от падения на ядро: для этого выдвигалось предположение, что они могут занимать только отдельные, строго определенные орбиты. Согласно этой новой теории электрон перемещается с орбиты на орбиту, исчезая на одной и мгновенно возникая на другой, не появляясь в пространстве между ними. Эта идея — знаменитый «квантовый скачок» — конечно, была чрезвычайно странной, но она была слишком красивой, чтобы оказаться ошибочной. «Квантовый скачок» не только удерживал электроны от катастрофического спирального падения на ядро, но также объяснял странности с длинами волн в спектре водорода. Электроны появлялись только на определенных орбитах, потому что только на них могли существовать. Это была блестящая проницательная догадка, и она принесла Бору Нобелевскую премию в 1922 году, через год после Эйнштейна.

Тем временем неутомимый Резерфорд, вернувшись в Кембридж и сменив Дж. Дж. Томсона на посту руководителя Кавендишской лаборатории, предложил модель, объяснявшую, почему не взрываются ядра. Он понял, что положительные заряды протонов должны компенсироваться какими-то нейтрализующими частицами, которые он назвал нейтронами. Идея была простой и привлекательной, но труднодоказуемой. Коллега Резерфорда Джеймс Чэдвик целых одиннадцать лет усиленно охотился за нейтронами, пока наконец в 1932 году не добился успеха. Он тоже получил Нобелевскую премию — в 1935 году. Как отмечают Бурс с соавторами[135] в своей истории данного вопроса, задержка с открытием, возможно, оказалась к лучшему, поскольку овладение нейтроном имело существенное значение для разработки атомной бомбы. (Ввиду того, что нейтроны не несут никакого заряда, они не отторгаются электрическими полями в сердцевине атома и тем самым могут, подобно крошечным торпедам, выстреливаться в атомное ядро, давая начало разрушительному процессу, известному как деление.) Случись, что нейтрон был бы выделен в 1920-х годах, замечают они, «весьма вероятно, что атомная бомба была бы впервые разработана в Европе и, несомненно, немцами».

Как бы то ни было, европейцы изо всех сил старались понять странное поведение электрона. Главная проблема, с которой они сталкивались, заключалась в том, что электрон вел себя то как частица, то как волна. Эта невероятная двойственность доводила физиков почти до помешательства. Все следующее десятилетие ученые по всей Европе лихорадочно выдвигали конкурирующие гипотезы. Во Франции принц Луи-Виктор де Бройль, потомок герцогского рода, пришел к заключению, что отдельные аномалии в поведении электронов исчезают, если рассматривать их как волны. Это наблюдение вызвало живой интерес австрийца Эрвина Шредингера, который весьма изощренным способом построил удобную для использования систему, названную волновой механикой. Почти одновременно немецкий физик Вернер Гейзенберг выступил с конкурирующей теорией, названной матричной механикой. Она была до того сложна математически, что вряд ли кто-нибудь в полной мере понимал ее, включая самого Гейзенберга. («Я даже не знаю, что такое матрица», — однажды в отчаянии признался он приятелю.) Но похоже, что он справился с некоторыми проблемами, которые не удалось разрешить Шредингеру.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*