KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (МИ)

БСЭ БСЭ - Большая Советская Энциклопедия (МИ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (МИ)" бесплатно, без регистрации.
Перейти на страницу:

  Назначение измерительных М. состоит в точном измерении линейных и угловых размеров объектов (зачастую совсем не малых). По способу измерения их можно разделить на два типа. Измерительные М. 1-го типа применяются только в тех случаях, когда измеряемое расстояние не превышает линейных размеров поля зрения М. В таких М. непосредственно (с помощью шкалы или винтового окулярного микрометра ) измеряется не сам объект, а его изображение в фокальной плоскости окуляра, и лишь затем, по известному значению увеличения объектива, вычисляется измеренное расстояние на объекте. Часто в этих М. изображения объектов сравниваются с образцовыми профилями, нанесёнными на пластинки сменных окулярных головок. В измерительныхМ. 2-го типа предметный столик с объектом и корпус М. можно с помощью точных механизмов перемещать друг относительно друга (чаще — столик относительно корпуса); измеряя это перемещение микрометрическим винтом или шкалой, жестко скрепленной с предметным столиком, определяют расстояние между наблюдаемыми элементами объекта. Существуют измерительные М., у которых измерение производится лишь в одном направлении (однокоординатные М.). Гораздо более распространены М. с перемещениями предметного столика в двух перпендикулярных направлениях (пределы перемещений до 200´500 мм ); для специальных целей применяются М., в которых измерения (а следовательно, и относительные перемещения столика и корпуса М.) возможны в трёх направлениях, соответствующих трём осям прямоугольных координат. На некоторых М. можно проводить измерения в полярных координатах; для этого предметный столик делают вращающимся и снабжают шкалой и нониусом для отсчёта углов поворота. В наиболее точных измерительных М. 2-го типа употребляются стеклянные шкалы, а отсчёты на них осуществляются с помощью вспомогательного (т. н. отсчётного) микроскопа (см. ниже). Точность измерений в М. 2-го типа значительно выше по сравнению с М. 1-го типа. В лучших моделях точность линейных измерений обычно порядка 0,001 мм, точность измерения углов — порядка 1'. Измерительные М. 2-го типа широко применяются в промышленности (особенно в машиностроении) для измерения и контроля размеров деталей машин, инструментов и пр.

  В устройствах для особо точных измерений (например, геодезических, астрономических и т. д.) отсчёты на линейных шкалах и разделённых кругах угломерных инструментов производят с помощью специальныхотсчётных М. — шкаловых М. и М.-микрометров. В первых имеется вспомогательная стеклянная шкала. Её изображение регулировкой увеличения объектива М. делают равным наблюдаемому интервалу между делениями основной шкалы (или круга), после чего, отсчитывая положение наблюдаемого деления между штрихами вспомогательной шкалы, можно непосредственно определить его с точностью около 0,01 интервала между делениями. Ещё выше точность отсчётов (порядка 0,0001 мм ) в М.-микрометрах, в окулярной части которых помещен нитяной или спиральный микрометр. Увеличение объектива регулируют так, чтобы перемещению нити между изображениями штрихов измеряемой шкалы соответствовало целое число оборотов (или полуоборотов) винта микрометра.

  Помимо описанных выше, имеется значительное число ещё более узко специализированных типов М., например М. для подсчёта и анализа следов элементарных частиц и осколков деления ядер в ядерных фотографических эмульсиях , высокотемпературные М. для изучения объектов, нагретых до температуры порядка 2000 °С, контактные М. для исследования поверхностей живых органов животных и человека (объектив в них прижимается вплотную к изучаемой поверхности, а фокусировка М. производится специальной встроенной системой).

  Часто М. в качестве важной составной части используются в сложных установках в сочетании с другими приборами. Примерами могут служить предназначенные для определения спектров поглощения препаратов микроспектрофотометрические установки (см. Спектрофотометр ), в которых М. объединены со специальными монохроматорами и устройствами, измеряющими световые потоки; ряд приборов, применяемых в офтальмологии ; компараторы , микрофотометры и многие др.

  Лит.: Михель К., Основы теории микроскопа, пер. с нем., М., 1955; Ринне Ф., Берек М., Оптические исследования при помощи поляризационного микроскопа, пер. с нем., М., 1937; Микроскопы, под ред. Н. И. Полякова, М., 1969; Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1—2, М. — Л., 1948—52; Франсон М., Фазово-контрастный и интерференционный микроскопы, пер. с франц., М., 1960; Федин Л. А., Микроскопы, принадлежности к ним и лупы, М., 1961; Федин Л. А., Барский И. Я., Микрофотография, Л., 1971; Оптические приборы для измерения линейных и угловых величин в машиностроении, М., 1964.

  Л. А. Федин.

Рис. 1 к ст. Микроскоп.

Рис. 2. Распределение освещённостей в изображении двух близких «точек» в предельном случае их визуального разрешения.

Рис. 3 к ст. Микроскоп.

Рис. 8. Принципиальная оптическая схема инвертированного микроскопа.

Рис. 10. Принципиальная схема стереомикроскопа, обеспечивающего объёмное восприятие наблюдаемых объектов.

Рис. 9. Микрофотографии нетравленого шлифа металла, снятые металлографическим микроскопом: слева — в светлом поле; справа — с фазово-контрастным устройством.

Рис. 6 к ст. Микроскоп.

Рис. 7. Микрофотография эритроцита человека в монохроматическом свете с l = 0,546 мкм . Изгиб интерференционной полосы воспроизводит в масштабе толщину эритроцита.

Рис. 4 к ст. Микроскоп.

Рис. 5 к ст. Микроскоп.

Микроскоп (созвездие)

Микроско'п (лат. Microscopium), созвездие Южного полушария неба; не содержит звёзд ярче 4,0 визуальной звёздной величины . Наилучшие условия для наблюдений в июле — августе, видно в южных районах СССР. См. Звёздное небо .

Микроскоп электронный

Микроско'п электро'нный, см. Электронный микроскоп .

Микроскопическая техника

Микроскопи'ческая те'хника в биологии, совокупность методов и приёмов для изучения с помощью оптического и электронного микроскопов строения, жизнедеятельности, развития, химического состава и физических свойств клеток, тканей и органов. М. т. включает: подготовку живых объектов к микроскопическому исследованию и его проведение, изготовление постоянных (неживых) препаратов; микро-, гисто- и цитохимические исследования; особые методы подготовки препаратов для электронной микроскопии.

  Прижизненные наблюдения в проходящем свете осуществляются на простейших, мелких яйцах, культивируемых клетках и тканях, прозрачных участках тела многоклеточных (например, на кровеносных сосудах в плавательной перепонке лягушки). В отражённом свете под микроскопом можно изучать поверхностные структуры клетки, ткани, органа. Для цитофизиологических наблюдений пользуются прижизненным окрашиванием , дающим представление о pH клетки и её органоидов, а также о физиологическом состоянии живого объекта. Для прижизненных наблюдений требуются: нагревательный столик (рис. 1 ) особый термостат, перестраиваемый на заданную температуру в широком температурном диапазоне; стеклянные, пластмассовые, кварцевые, металлические или другие камеры (рис. 2 ) с постоянной или проточной средой требуемого состава. Наблюдаемые объекты (чаще клетки однослойных культур) могут длительное время оставаться нормальными при достаточном снабжении их питательными веществами и кислородом. Одна из задач М. т. для живых объектов — повышение контрастности изображения, для чего используется, например, фазово-контрастное устройство. Интерференционная микроскопия дополнительно даёт сведения о толщине объекта, концентрации в нём сухого вещества, содержании воды и показателе преломления. Прижизненные наблюдения проводятся также в тёмном поле (ультрамикроскопия) с использованием специального конденсора; при этом объект освещается сбоку, а фон остаётся тёмным. Темнопольное устройство позволяет увидеть чрезвычайно мелкие (например, коллоидные) частицы. С помощью поляризационного микроскопа можно изучать объекты (или их элементы), обладающие оптической анизотропией . Для исследования как живых, так и неживых биологических объектов применяется люминесцентная микроскопия, особенно для изучения вторичной флуоресценции, возникающей при окраске клеток и тканей слабыми концентрациями флуорохромов (акридиновый оранжевый, эритрозин, родамин и др.). Различия во флуоресценции отдельных химических веществ (нуклеиновых кислот, липидов) позволяют изучать их локализацию, динамику изменений и даже количество изучаемого вещества. Соединение белка с флуорохромом (изоцианат флуоресцеина) и связывание этого вещества с антителами (см. Иммунофлуоресценция ) даёт возможность выяснить локализацию антигенов, судьбу антител и др. вопросы иммунологии . Недавно получил распространение метод микроскопии живых и неживых объектов в ультрафиолетовых лучах с использованием специальной кварцевой оптики. Наблюдения над живыми объектами документируются микрокиносъёмкой, особенно замедленной.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*