KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » Билл Брайсон - Краткая история почти всего на свете

Билл Брайсон - Краткая история почти всего на свете

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Билл Брайсон, "Краткая история почти всего на свете" бесплатно, без регистрации.
Перейти на страницу:

В 1919 году, уже в тридцать лет, он переехал в Калифорнию и получил должность в обсерватории Маунт Вильсон близ Лос-Анджелеса. Быстро и более чем неожиданно он становится самым выдающимся астрономом XX века.

Стоит на минуту прерваться и представить, как мало было известно о космосе в то время. Сегодня астрономы считают, что в видимой Вселенной насчитывается около 140 млрд галактик.[121] Это огромное число, намного больше, чем можно себе представить. Если бы галактики были мороженым горохом, то такого количества было бы достаточно, чтобы заполнить им большой концертный зал, скажем, Бостон Гарден или Ройял Альберт Холл. (Это на самом деле вычислил астрофизик Брюс Грегори.) В 1919 году, когда Хаббл приблизил глаз к окуляру, количество известных галактик составляло ровно одну штуку — Млечный Путь. Все остальное считалось либо частью Млечного Пути, либо одним из множества отдаленных незначительных скоплений газа. Хаббл вскоре продемонстрировал, насколько ошибочным было это убеждение.

В следующие десять лет Хаббл занимался решением двух самых фундаментальных вопросов, касающихся нашей Вселенной: определением ее возраста и размеров. Чтобы получить ответ, необходимо было знать две вещи: как далеко находятся определенные галактики и как быстро они удаляются от нас (т. е. скорость разбегания). Красное смещение дает нам скорость, с которой галактики удаляются, но ничего не говорит о расстояниях до них. Для определения расстояний требуются так называемые «эталонные свечи» — звезды, светимость которых можно надежно вычислить и использовать как эталон для измерения яркости других звезд (а отсюда относительного расстояния до них).

Удача пришла к Хабблу вскоре после того, как выдающаяся женщина, по имени Генриетта Сван Левитт, придумала, как найти такие звезды. Левитт работала в обсерватории Гарвардского колледжа вычислителем.[122] Вычислители всю жизнь изучали фотопластинки с отснятыми звездами и производили вычисления — отсюда название. Это было более чем нудное занятие, но другой работы в области астрономии в те дни для женщин в Гарварде не было — как, впрочем, и в других местах. Такой порядок, хотя и был несправедливым, давал неожиданные преимущества: он означал, что половина лучших умов обращалась на занятия, которые иначе привлекли бы мало внимания, и создал условия, когда женщины в конечном счете сумели разобраться в деталях строения космоса, которые зачастую ускользали от внимания их коллег-мужчин.

Одна вычислительница из Гарварда, Энни Джамп Кэннон, благодаря постоянной работе со звездами создала их классификацию, настолько удобную, что ею пользуются по сей день.[123] Вклад Левитт в науку был еще более основательным. Она заметила, что переменные звезды определенного типа, а именно цефеиды (названные по созвездию Цефея, где была обнаружена первая из них), пульсируют в строго определенном ритме, демонстрируя что-то вроде звездного сердцебиения. Цефеиды встречаются крайне редко, но по крайней мере одна из них хорошо известна большинству из нас — Полярная звезда является цефеидой.

Теперь мы знаем, что цефеиды пульсируют подобным образом, потому что это звезды преклонного возраста, которые прошли, пользуясь языком астрономов, «стадию главной последовательности» и стали красными гигантами. Химия красных гигантов несколько сложновата для нашего изложения (она требует, например, понимания свойств однократно ионизированных атомов гелия и множества других вещей), но, если быть проще, можно сказать так: они сжигают остатки топлива таким образом, что в результате получаются строго ритмичные изменения блеска. Гениальная догадка Левитт состояла в том, что, сравнивая относительную яркость цефеид в разных точках неба, можно определить, как соотносятся расстояния до них. Их можно было использовать в качестве эталонных свечей — термин, предложенный Левитт, который стал употребляться всеми. Этот метод дает возможность определять только относительные, а не абсолютные расстояния, но все же это был первый способ измерения крупномасштабных расстояний во Вселенной.

(Чтобы представить значение этих озарений в истинном свете, стоит, пожалуй, отметить, что в то время, когда Левитт и Кэннон делали свои выводы о фундаментальных свойствах космоса, располагая для этого лишь расплывчатыми изображениями далеких звезд на фотографических пластинках, гарвардский астроном Уильям Г. Пикеринг,[124] который, конечно, мог, когда только хотел, глядеть в первоклассный телескоп, разрабатывал свою, не иначе как новаторскую теорию о том, что темные пятна на Луне вызваны полчищами сезонно мигрирующих насекомых.)

Объединив космическую линейку Левитт с оказавшимися под рукой красными смещениями Весто Слайфера, Хаббл стал свежим взглядом оценивать расстояния до отдельных объектов космического пространства. В 1923 году он показал, что отдаленная призрачная туманность в созвездии Андромеды, обозначаемая М31, — это вовсе не газовое облако, а россыпь звезд, самая настоящая галактика, в сто тысяч световых лет шириной на расстоянии по крайней мере девятисот тысяч световых лет от нас.[125] Вселенная оказалась обширнее — куда как обширнее, чем кто бы то ни было мог предположить. В 1924 году Хаббл опубликовал свою ключевую статью «Цефеиды в спиральных туманностях», где показал, что Вселенная состоит не из одного Млечного Пути, а из большого числа отдельных галактик — «островных вселенных», — многие из которых больше Млечного Пути и значительно удаленнее.

Одного этого открытия было бы достаточно, чтобы прославиться как ученому, но Хаббл теперь решил определить, сколь велика Вселенная, и сделал еще более поразительное открытие. Он стал производить измерения спектров отдаленных галактик, продолжая дело, начатое в Аризоне Слайфером. Пользуясь новым 100-дюймовым телескопом Хукера в обсерватории Маунт Вильсон, он при помощи остроумных умозаключений определил к началу 1930-х годов, что все галактики на небе (за исключением нашего местного скопления) двигаются прочь от нас. Более того, их скорости почти в точности пропорциональны расстояниям: чем дальше галактика, тем быстрее она движется.

Это было поистине потрясающе. Вселенная расширялась стремительно и равномерно во всех направлениях. Не надо обладать богатым воображением, чтобы произвести отсчет в обратную сторону и понять, что все это началось с какой-то центральной точки. Оказалось, что Вселенная далеко не была постоянной, неподвижной, бесконечной пустотой, какой все ее представляли, она оказалась миром, имеющим начало. А значит, у нее может быть и конец.

Удивительно, как отметил Стивен Хокинг, что мысль о расширяющейся Вселенной раньше никому не приходила в голову.[126] Статичная Вселенная, как должно было быть очевидно еще Ньютону и любому думающему астроному после него, просто рухнула бы внутрь самой себя под действием взаимного притяжения всех объектов. Кроме того, существовала еще одна проблема: если бы звезды бесконечно горели в статичной Вселенной, то в ней стало бы невыносимо жарко — слишком жарко для подобных нам существ. Идея расширяющейся Вселенной одним махом решала большинство из этих проблем.

Хаббл был куда лучшим наблюдателем, нежели мыслителем, и не сразу полностью оценил значение своих открытий. Отчасти потому, что был совершенно не в курсе общей теории относительности Эйнштейна. Это довольно удивительно, потому что к тому времени Эйнштейн и его теория пользовались всемирной славой. Кроме того, в 1929 году Майкельсон — тогда уже в преклонных годах, но все еще обладавший живым умом и пользовавшийся уважением как ученый, — занял должность в Маунт Вильсон, чтобы заняться измерением скорости света при помощи своего надежного интерферометра, и наверняка должен был хотя бы упомянуть Хабблу о применимости теории Эйнштейна к его открытиям.

Во всяком случае, Хаббл упустил шанс сделать из своего открытия теоретические выводы. Этот шанс (вместе с докторской степенью в Массачусетском технологическом институте) выпал бельгийскому ученому и священнику Жоржу Леметру. Леметр объединил две части своей собственной «теории фейерверков», которая предполагала, что Вселенная началась с геометрической точки, «первичного атома», который разорвался на части и с тех пор продолжает разлетаться. Эта идея очень близко предвосхищала современную идею Большого Взрыва, но настолько опережала свое время, что Леметру редко уделяют больше пары фраз, которые мы посвятили ему здесь. Миру потребуется не одно десятилетие вкупе с нечаянным открытием фонового космического излучения Пензиасом и Вильсоном с их шипящей антенной в Нью-Джерси, прежде чем Большой Взрыв из интересной идеи превратится в упрочившуюся теорию.

Ни Хаббл, ни Эйнштейн не принимали участия в этой большой истории. Но, хотя в то время никто бы этого не предположил, оба они сыграли в ней такую значительную роль, на какую только могли надеяться.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*