KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » Большая энциклопедия промышленного шпионажа - Каторин Юрий Федорович

Большая энциклопедия промышленного шпионажа - Каторин Юрий Федорович

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Каторин Юрий Федорович, "Большая энциклопедия промышленного шпионажа" бесплатно, без регистрации.
Перейти на страницу:

Кстати, использование подобных систем — достаточно вредное для здоровья дело: как для тех, кого подслушивают, так и для тех, кто подслушивает. Специалисты ЦРУ вынуждены были одевать специальные фартуки, предохраняющие важнейшие органы от влияния вредного излучения, когда сами облучали советские учреждения.

Применение полуактивных систем в рамках промышленного шпионажа — явление на Западе довольно редкое. На российском рынке подобные системы также пока не представлены и, видимо, не будут представлены еще несколько лет. Однако при дальнейшем совершенствовании противодействия техническим средствам разведки жизнь заставит заинтересованные организации настоятельно потребовать от производителей спецтехники выпуска полуактивных систем.

Кроме использования специальных средств, устанавливаемых на объекте, теоретически возможно зондирование отдельных радиотехнических устройств (телевизоров, приемников и т. д.), узлов бытовой техники, строительных конструкций. Однако на практике это крайне сложная задача, так как требуется перебрать множество вариантов по направлению излучения, частоте зондирующего сигнала, уровня, вида модуляции и т. п.

Перспективой развития подобных средств в радиодиапазоне является модернизация резонаторов с целью повышения индекса модуляции отраженного излучения и рациональный выбор частоты. Приоритетным направлением развития является и освоение более высокочастотных диапазонов (вплоть до миллиметровых волн). Можно предположить, что подобные резонаторы будут выполняться в виде отдельных узлов различного оборудования (кондиционеров, радиоприемников и т. д.) или элементов строительных конструкций. Об этом можно судить по широко известной истории строительства нового здания американского посольства в Москве. Обнаружив в 1982 году подслушивающие устройства, американцы прекратили строительство. Советская сторона в лице председателя КГБ В. Бакатина передала схемы размещения аппаратуры. Многие изделия удивили специалистов, при этом вершиной всего сочли саму конструкцию здания — «восьмиэтажного микрофона». Было объявлено, что направленное на него излучение соответствующей частоты модулируется некими специальными конструктивными элементами, которые способны улавливать звуковые колебания, возникающие при разговоре. Подозревали, что источник и приемник излучения находятся в стоящей через дорогу церкви Девяти мучеников Кизических. В разговорах американских экспертов она часто фигурировала как «храм Богородицы на телеметрии».

Оптико-акустическая аппаратура перехвата речевой информации

Наиболее перспективным направлением в области ВЧ-навязывания является использование лазерных микрофонов, первые образцы которых были приняты на вооружение американскими спецслужбами еще в 60-е годы.

Принцип работы этих устройств, получивших название лазерные системы акустической разведки (ЛСАР), заключается в следующем. Генерируемое лазерным передатчиком излучение (ВЧ-сигнал) распространяется через атмосферу, отражается от поверхности оконного стекла, модулируется при этом по закону акустического сигнала, также воздействующего на стекло, повторно преодолевает атмосферу и принимается фотоприемником, восстанавливающим разведываемый сигнал (рис. 1.3.43).

Сама модуляция зондирующего сигнала на нелинейном элементе, в качестве которого выступает оконное стекло, достаточно сложный физический процесс, который упрощенно может быть представлен в следующем виде:

1. Звуковая волна, генерируемая источником акустического сигнала, падая на границу раздела воздух—стекло, вызывает отклонения поверхности стекла от исходного положения. Отклонения приводят к дифракции света, отражающегося от этой границы.

Действительно, это заметно, например, при падении плоской монохроматической звуковой волны на плоскую границу раздела. Отклонения границы от стационарного состояния представляют собой бегущую вдоль стекла «поверхностную» волну с амплитудой, пропорциональной амплитуде смещений среды в поле звуковой волны, а длина А, этой поверхностной волны равна:

Большая энциклопедия промышленного шпионажа - img_56.png

где 3 — угол падения, и а — длина падающей акустической волны. 2. Отраженный от возмущенной поверхности свет содержит сдвинутые по частоте дифракционные компоненты. Если поперечный размер падающего пучка лазерного излучения значительно превышают длину поверхностной волны, то отраженный свет представляет собой совокупность диф-

Большая энциклопедия промышленного шпионажа - img_57.png

Рис. 1.3.43. Принцип работы лазерного микрофона

рагирующих пучков, распространяющихся по дискретным направлениям, определяемым из равенства:

Большая энциклопедия промышленного шпионажа - img_58.png

где

Большая энциклопедия промышленного шпионажа - img_59.png
— угол падения исходного светового пучка,
Большая энциклопедия промышленного шпионажа - img_60.png
— волновое число,
Большая энциклопедия промышленного шпионажа - img_61.png
— длина световой волны.

В результате в отраженных пучках присутствуют три вида модуляции оптического излучения.

Во-первых, частотная модуляция, вызванная эффектом Доплера, вследствие колебательных движений оконного стекла под воздействием акустических сигналов.

При этом девиация частоты относительно центрального значения монохроматического излучения лазера подсветки имеет величину:

Большая энциклопедия промышленного шпионажа - img_62.png

где

Большая энциклопедия промышленного шпионажа - img_63.png
- скорость распространения поверхностной волны, С3 — скорость звука в среде.

Во-вторых, фазовая модуляция, вызванная наличием в отраженном сигнале как зеркально-отраженного, так и дифракционных компонентов.

Результат суперпозиции последних приводит к тому, что если поперечные размеры падающего оптического пучка малы по сравнению с длиной поверхностной волны, то в отраженном сигнале будет доминировать дифракционный пучок нулевого порядка. В этом случае и окажется, что фаза световой волны будет промодулирована во времени с частотой звукового сигнала.

В-третьих, амплитудная модуляция, вызванная колебаниями подсвечивающего пучка относительно направления зеркального (максимального) отражения.

Эти колебания вызваны также пространственным перемещением оконного стекла под воздействием акустического сигнала.

На практике наиболее часто используют системы, работающие нa восприятии именно этого вида модуляции.

Для того чтобы работать с лазерными системами акустической разведки, требуется большой опыт. В частности, необходимо правильно выбрать точку съема, грамотно расположить аппаратуру на местности, провести тщательную юстировку. Для обработки перехваченных сообщений необходимо в большинстве случаев использование профессиональной аппаратуры обработки речевых сигналов на базе компьютера. Однако пока подобная техника не для любителей. В нашу страну несколько раз ввозились лазерные системы, но большинство из них так и не были проданы из-за высокой стоимости (от 10 до 130 тысяч $) и неподготовленности потенциальных пользователей, которые, кроме крика ворон, ничего не могли услышать.

Однако из печати известно, что лазерные микрофоны широко использовались против сотрудников советского (российского) посольства и консульств в США, подслушивались разговоры даже в семьях их сотрудников по месту жительства. Поэтому можно полагать, что так как опытные специалисты в состоянии скрытно применять подобные устройства, то весьма вероятно привлечение лазерных систем для решения задач конкурентной борьбы уже в ближайшем будущем.

На сегодняшний день создано целое семейство лазерных средств акустической разведки. Достижения в развитии лазерной техники позволили значительно улучшить технические характеристики и надежность работы данных систем разведки. Достаточно сказать, что появилась возможность дистанционной регистрации колебаний стекла с амплитудой вплоть до 10-14—10-16 м, имеются сообщения о потенциальной возможности работы по объектам на расстояниях до 10 км, а наработка на отказ серийного гелий-неонового лазера составляет не менее 10 000 часов.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*