БСЭ БСЭ - Большая Советская Энциклопедия (ФУ)
.
Оператор Ф. п. может быть расширен на более обширные классы функций, нежели совокупность суммируемых функций [например, для функций f (x ) таких, что (1 + |x |)–1 f (x ) суммируема, Ф. п. определяется формулой (9)], и даже на некоторые классы обобщённых функций (т. н. медленного роста).
Имеются обобщения Ф. п. Одно из них использует различного рода специальные функции, например Бесселя функции , это направление получает завершение в теории представлений непрерывных групп . Другим является т. н. преобразование Фурье — Стилтьеса, широко применяемое, например, в теории вероятностей; оно определяется для произвольной ограниченной неубывающей функции j(x ) Стилтьеса интегралом
(10)
и называется характеристической функцией распределения j. Для представимости функции g (u ) в виде (10) необходимо и достаточно, чтобы при любых u 1 ,..., un , x1 ,...,xn было
(теорема Бохнера — Хинчина).
Ф. п., первоначально возникшее в теории теплопроводности, имеет многочисленные применения как в самой математике (например, при решении дифференциальных, разностных и интегральных уравнений, в теории специальных функций и т.д.), так и в различных разделах теоретической физики. Например, Ф. п. стало стандартным аппаратом квантовой теории поля , широко используется в методе функций Грина для неравновесных задач квантовой механики и термодинамики, в теории рассеяния и т.д.
Лит.: Снеддон И., Преобразование Фурье, пер. с англ., М., 1955; Владимиров В. С., Обобщенные функции в математической физике, М., 1976.
Фурье ряд
Фурье' ряд, тригонометрический ряд , служащий для разложения периодической функции на гармонические компоненты. Если функция f (x ) имеет период 2T , то её Ф. р. имеет вид
,
где a0 , an , bn (n ³ 1) — Фурье коэффициенты . В зависимости от того, в каком смысле понимаются интегралы в формулах для коэффициентов, говорят о рядах Фурье — Римана, Фурье — Лебега и т.д. Обычно рассматривают 2p-периодические функции (общий случай сводится к ним преобразованием независимого переменного).
Ф. р. представляют собой простейший класс разложений по ортогональной системе функций , а именно — по тригонометрической системе 1, cos x , sin x , cos 2x , sin 2x ,..., cos nx , sin nx ,..., которая обладает двумя важными свойствами: замкнутостью и полнотой. Частичные суммы Ф. р. (суммы Фурье)
обращают в минимум интеграл
,
где tn (x ) — произвольный тригонометрический полином порядка £ n , а функция f (x ) интегрируема с квадратом. При этом
,
так что функции f (x ), имеющие интегрируемый квадрат, сколь угодно хорошо аппроксимируются своими суммами Фурье в смысле среднего квадратичного уклонения (см. Приближение и интерполирование функций ).
Для любой интегрируемой функции f (x ) коэффициенты Фурье an , bn при n ® ¥ стремятся к нулю (Б. Риман, А. Лебег). Если же функция f (x ) несобственно интегрируема по Риману, то коэффициенты Фурье могут и не стремиться к нулю (Риман). В случае, если квадрат функции f (x ) интегрируем, то ряд сходится и имеет место равенство Парсеваля
.
Один из вариантов этой формулы был впервые указан французским математиком М. Парсевалем (1799), а общая формула (где интеграл понимается в смысле Лебега) доказана Лебегом. Обратно, для любой последовательности действительных чисел an , bn со сходящимся рядом существует функция с интегрируемым по Лебегу квадратом, имеющая эти числа своими коэффициентами Фурье (немецкий математик Э. Фишер, венгерский математик Ф. Рис). Для интегралов в смысле Римана эта теорема неверна.
Известно большое число признаков сходимости Ф. р., т. е. достаточных условий, гарантирующих сходимость ряда. Например, если функция f (x ) имеет на периоде конечное число максимумов и минимумов, то её Ф. р. сходится в каждой точке (П. Дирихле ). Более общо, если f (x ) имеет ограниченное изменение (см. Изменение функции ), то её Ф. р. сходится в каждой точке и притом равномерно на каждом отрезке, внутреннем к отрезку, на котором f (x ) непрерывна (К. Жордан ). Если f (x ) непрерывна и её модуль непрерывности w(d, f ) удовлетворяет условию , то её Ф. р. равномерно сходится (итальянский математик У. Дини, 1880).
Проблема полного исследования условий сходимости Ф. р. оказалась весьма трудной, и в этом направлении до сих пор нет окончательных результатов. Как показал Риман, сходимость или расходимость Ф. р. в некоторой точке x0 зависит от поведения функции f (x ) лишь в сколь угодно малой окрестности этой точки (т. н. принцип локализации для Ф. р.). Если в точке x0 функция f (x ) имеет разрыв первого рода, т. с. существуют различные пределы f (x0 — 0) и f (x0 + 0), и Ф. р. этой функции сходится в точке x0 , то он сходится к значению 1 /2 {f (x0 — 0) + f (x0 + 0)}. В частности, если Ф. р. непрерывной периодической функции f (x ) сходится в каждой точке, то его сумма равна f (x ).
Известно, что существуют непрерывные функции, Ф. р. которых расходятся в бесконечном числе точек (немецкий математик П. дю Буа-Реймон, 1875), и интегрируемые в смысле Лебега функции, Ф. р. которых расходятся в каждой точке (А. Н. Колмогоров , 1926). Однако Ф. р. всякой интегрируемой с квадратом функции сходится почти всюду (Л. Карлесон, 1966). Этот результат верен и для функций из любого пространства Lp (—p, p) с p < 1 (Р. Хант, 1968). Упомянутые «дефекты сходимости» породили методы суммирования Ф. р. Вместо того чтобы исследовать поведение сумм Фурье, исследуют средние, образованные из этих сумм, поведение которых в ряде случаев оказывается значительно более правильным. Например, для любой непрерывной периодической функции f (x ) сумма Фейера
при n ® ¥ равномерно сходятся к f (x ) (Л. Фейер , 1904).
Лит.: Толстов Г. П., Ряды Фурье, 2 изд., М., 1960; Бари Н. К., Тригонометрические ряды, М., 1961; Зигмунд А., Тригонометрические ряды, пер. с англ., т. 1—2, М., 1965.
Фурье Франсуа Мари Шарль
Фурье' (Fourier) Франсуа Мари Шарль (7.4.1772, Безансон, — 10.10.1837, Париж), французский утопический социалист. Родился в купеческой семье, почти всю жизнь служил в торговых домах. Окончил среднюю школу, затем пополнял знания путём самообразования. На мировоззрении Ф. отразилось его глубокое разочарование в результатах Великой французской революции.
Свои исторические и социальные взгляды Ф. впервые изложил в статье «Всемирная гармония» (1803), анонимной брошюре «О торговом шарлатанстве» (1807) и книге «Теория четырех движений и всеобщих судеб» (1808, рус. пер. 1938). Подробный план организации общества будущего Ф. разработал в «Трактате о домоводческо-земледельческой ассоциации» (т. 1—2, 1822), переизданном посмертно в 1-м французском собрании сочинений, т. 2—5, 1841—43, под заглавием «Теория всемирного единства» и в книге «Новый хозяйственный социетарный мир» (1829, рус. пер, 1939).
Ф. отвергал социальную философию и экономические учения Просвещения , считая, что они противоречат опыту и оправдывают негодный общественный строй. Вместе с тем Ф. воспринял и развил ряд идей материалистов 18 в.: признание единства мироздания как извечно существующей и закономерно движущейся материи во всём многообразии её форм и видов движения; определение исторического процесса как движения, направленного на обеспечение всеобщего благополучия, и др. Задачу своей жизни Ф. видел в разработке «социальной науки» как части «теории всемирного единства», основанной на принципе «притяжения по страсти», всеобщей закономерности, обусловливающей природную склонность человека к какому-либо виду коллективного труда. Ф. разработал оригинальную схему истории человечества. Общество последовательно проходит периоды эдемизма («райской» первобытности), дикости, варварства и цивилизации. Особое внимание Ф. уделил анализу и критике современного периода («периода цивилизации»); он вскрыл его внутренние противоречия (кризисы от избытка, бедность, порождаемую изобилием, и др.). На смену строю цивилизации, по Ф., должен прийти высший общественный строй — строй гармонии, который не только соответствует предначертаниям бога-природы, но представляется как историческая необходимость.