KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (КИ)

БСЭ БСЭ - Большая Советская Энциклопедия (КИ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (КИ)" бесплатно, без регистрации.
Перейти на страницу:

  Сложность кибернетических систем определяется двумя факторами. Первый фактор — это так называемая размерность системы, т. е. общее число параметров, характеризующих состояния всех её элементов. Второй фактор — сложность структуры системы, определяющаяся общим числом связей между ее элементами и их разнообразием. Простая совокупность большого числа не связанных между собой элементов с повторяющимися от элемента к элементу простыми связями, ещё не составляет сложной системы. Сложные (большие) кибернетические системы — это системы с описаниями, не сводящимися к описанию одного элемента и указанию общего числа таких (однотипных) элементов.

  При изучении сложных кибернетических систем, помимо обычного разбиения системы на элементы, используется метод укрупнённого представления систем в виде совокупности отдельных блоков, каждый из которых является отдельной системой. При изучении систем большой сложности употребляется целая иерархия подобных блочных описаний: на верхнем уровне такой иерархии вся система рассматривается как один блок, на нижнем уровне в качестве составляющих системы блоков выступают отдельные элементы системы.

  Необходимо подчеркнуть, что само понятие элемента системы является до известной степени условным, зависящим от ставящихся при изучении системы целей и от глубины проникновения в предмет. Так, при феноменологическом подходе изучения мозга, когда предметом изучения является не строение мозга, а выполняемые им функции, мозг может рассматриваться как один элемент, хотя и характеризуемый достаточно большим числом параметров. Обычный подход заключается в том, что в качестве составляющих мозг элементов выступают отдельные нейроны. При переходе на клеточный или молекулярный уровень каждый нейрон может, в свою очередь, рассматриваться как сложная кибернетическая система и т.д.

  Если обмен сигналами между элементами системы полностью замыкается в ее пределах, то система называется изолированной или замкнутой. Рассматриваемая как один элемент, такая система не имеет ни входных, ни выходных сигналов. Открытые системы в общем случае имеют как входные, так и выходные каналы, по которым они обмениваются сигналами с внешней средой. Предполагается, что всякая открытая кибернетическая система снабжена рецепторами (датчиками), воспринимающими сигналы из внешней среды и предающими их внутрь системы. В случае, когда в качестве рассматриваемой кибернетической системы выступает человек, такими рецепторами являются различные органы чувств (зрение, слух, осязание и др.). Выходные сигналы системы передаются во внешнюю среду через посредство эффекторов (исполнительных механизмов), в качестве которых в рассматриваемом случае выступают органы речи, мимика, руки и др.

  Поскольку каждая система сигналов, независимо от того, формируется она разумными существами или объектами и процессами неживой природы, несет в себе ту или иную информацию, то всякая открытая кибернетическая система, равно как и элементы любой системы (открытой или замкнутой), может рассматриваться как преобразователь информации. При этом понятие информации рассматривается в очень общем смысле, близком к физическому понятию энтропии (см. Информация в кибернетике).

  Кибернетический подход к изучению объектов различной природы. Рассмотрение различных объектов живой и неживой природы как преобразователей информации или как систем, состоящих из элементарных преобразователей информации, составляет сущность так называемого кибернетического подхода к изучению этих объектов. Этот подход (равно как и подход со стороны др. фундаментальных наук — механики, химии и тому подобное) требует определенного уровня абстракции. Так, при кибернетическом подходе к изучению мозга как системы нейронов обычно отвлекаются от их размеров, формы, химического строения и др. Предметом изучения становятся состояния нейронов (возбужденное  или нет), вырабатываемые ими сигналы, связи между нейронами и законы изменения их состояний.

  Простейшие преобразователи информации могут осуществлять преобразование информации лишь одного определённого вида. Так, например, исправный дверной звонок при нажатии кнопки (рецептора) отвечает всегда одним и тем же действием — звонком или гудением зуммера. Однако, как правило, сложные кибернетические системы обладают способностью накапливать информацию в той или иной форме и в зависимости от этого менять выполняемые ими действия (преобразование информации). По аналогии с человеческим мозгом подобное свойство кибернетических систем называют иногда памятью.

  «Запоминание» информации в кибернетических системах может производиться двумя основными способами — либо за счет изменения состояний элементов системы, либо за счет изменения структуры системы (возможен, разумеется, смешанный вариант). Между этими двумя видами «памяти» по существу нет принципиальных различий. В большинстве случаев это различие зависит лишь от принятого подхода к описанию системы. Например, одна из современных теорий объясняет долговременную память человека изменениями проводимости синаптических контактов, т. е. связей между отдельными составляющими мозг нейронами.  Если в качестве элементов, составляющих мозг, рассматриваются лишь сами нейроны, то изменение синаптических контактов следует рассматривать как изменение структуры мозга. Если же наряду с нейронами в число составляющих мозг элементов включить и все синаптические контакты (независимо от степени их проводимости), то рассматриваемое явление сведется к изменению состояния элементов при неизменной структуре системы.

  ЭВМ как преобразователи информации. Из числа сложных технических преобразователей информации наибольшее значение для К. имеют ЭВМ. В более простых вычислительных машинах — цифровых электромеханических или аналоговых — перенастройка на различные задачи осуществляется с помощью изменения системы связей между элементами на специальной коммутационной панели. В современных универсальных ЭВМ такие изменения производятся с помощью «запоминания» машиной в специальном устройстве, накапливающем информацию, той или иной программы её работы.

  В отличие от аналоговых машин, оперирующих с непрерывной информацией, современные ЭВМ имеют дело с дискретной информацией. На входе и выходе ЭВМ  в качестве такой информации могут выступать любые последовательности десятичных цифр, букв знаков препинания и др. символов. Внутри машины эта информация обычно представляется (или, как говорят, кодируется) в виде последовательности сигналов, принимающих лишь два различных значения.

  В то время как возможности аналоговых машин (равно как и любых других искусственно созданных устройств) ограничены преобразованиями строго ограниченных типов, современные ЭВМ обладают свойством универсальности. Это означает, что любые преобразования буквенно-цифровой информации, которые могут быть определены произвольной конечной системой правил любой природы (арифметических, грамматических и др.) могут быть выполнены ЭВМ после введения в нее составленной должным образом программы. Эта способность ЭВМ достигается за счет универсальности ее системы команд, т. е. элементарных преобразований информации, которые закладываются в структуру ЭВМ. Подобно тому, как из одних и тех же деталей собираются любые дома, из элементарных преобразований могут складываться любые, сколь угодно сложные преобразования буквенно-цифровой информации. Программа ЭВМ как раз и представляет собой последовательность таких элементарных преобразований.

  Свойство универсальности ЭВМ не ограничивается одной лишь буквенно-цифровой информацией. Как показывается в теории кодирования , в буквенно-цифровой (и даже просто цифровой) форме может быть представлена (закодирована) любая дискретная информация, а также — с любой заданной степенью точности — произвольная непрерывная информация. Таким образом, современные ЭВМ могут рассматриваться как универсальные преобразователи информации. Другим известным примером универсального преобразователя информации (хотя и основанного на совершенно иных принципах) является человеческий мозг.

  Свойство универсальности современных ЭВМ открывает возможность моделирования с их помощью любых др. преобразователей информации, в том числе любых мыслительных процессов. Такая возможность ставит ЭВМ в особое положение: с момента своего возникновения они представляют основное техническое средство, основной аппарат исследования, которым располагает К.

  Управление в кибернетических системах. В рассмотренных до сих пор случаях изменение поведения ЭВМ определялось человеком, меняющим программы ее работы. Можно, однако составить программу изменения программы работ ЭВМ и организовать ее общение с внешней средой через соответствующую систему рецепторов и эффекторов. Таким образом, можно моделировать различные формы изменения поведения и развития, наблюдающиеся в сложных биологических и социальных системах. Изменение поведения сложных кибернетических систем есть результат накопления обработанной соответствующим образом информации, которую эти системы получили в прошлом.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*