KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (СТ)

БСЭ БСЭ - Большая Советская Энциклопедия (СТ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (СТ)" бесплатно, без регистрации.
Перейти на страницу:

Строительная механика корабля

Строи'тельная меха'ника корабля', научная дисциплина, рассматривающая методы расчёта прочности и жёсткости корпусных конструкций судна . Изучает воздействие внешних сил на конструкции, исследует напряжения и деформации, возникающие в них под действием заданной системы сил. С. м. к. базируется на положениях теоретической механики , упругости теории и пластичности теории , надёжности , сопротивления материалов .

  Вопросы прочности корабля впервые были рассмотрены Л. Эйлером . Основоположником С. м. к. считается И. Г. Бубнов . Значительный вклад в развитие С. м. к. внесли советские учёные: А. Н. Крылов , Ю. А. Шиманский, П. Ф. Папкович, В. В. Екимов, В. В. Новожилов . При решении задач С. м. к. обычно рассматривает упрощённую схему конструкции судна. Вследствие случайного характера внешних воздействий на судно в море (ветер, волны) в С. м. к. при определении расчётных внешних сил и обосновании коэффициента запаса прочности используются методы теории вероятностей, математической статистики и теории случайных процессов, базирующиеся на статистическом материале, накопленном в результате долговременных измерений нагрузок, напряжений и деформаций корпусных конструкций в рабочих условиях.

  Методы С. м. к. используются при проектировании военных кораблей и составляют основу соответствующих разделов Правил постройки судов Регистра Союза ССР , регламентирующих прочность корпусов гражданских судов.

  Лит.: Папкович П. Ф., Труды по строительной механике корабля, т. 1—4, М., 1962—63; Короткий Я. И., Ростовцев Д. М., Сивере Н. Л., Прочность корабля, Л., 1974.

  А. Н. Максимаджи.

Строительная светотехника

Строи'тельная светоте'хника, см. в ст. Светотехника .

Строительная теплотехника

Строи'тельная теплоте'хника, строительная теплофизика, научная дисциплина, рассматривающая процессы передачи тепла, переноса влаги и проникновения воздуха в здания и их конструкции и разрабатывающая инженерные методы расчёта этих процессов; раздел строительной физики . В С. т. используются данные смежных научных областей (теории тепло- и массообмена, физической химии, термодинамики необратимых процессов и др.), методы моделирования и теории подобия (в частности, для инженерных расчётов переноса тепла и вещества), обеспечивающие достижение практического эффекта при разнообразных внешних условиях и различных соотношениях поверхностей и объёмов в зданиях. Большое значение в С. т. имеют натурные и лабораторные исследования полей температуры и влажности в ограждающих конструкциях зданий, а также определение теплофизических характеристик строительных материалов и конструкций.

  Методы и выводы С. т. используются при проектировании ограждающих конструкций, которые предназначены для создания необходимых температурно-влажностных и санитарно-гигиенических условий (с учётом действия систем отопления, вентиляции и кондиционирования воздуха) в жилых, общественных и производственных зданиях. Значение С. т. особенно возросло в связи с индустриализацией строительства , значительных увеличением масштабов применения (в разнообразных климатических условиях) облегчённых конструкций и новых строительных материалов .

  Задача обеспечения необходимых теплотехнических качеств наружных ограждающих конструкций решается приданием им требуемых теплоустойчивости и сопротивления теплопередаче. Допустимая проницаемость конструкций ограничивается заданным сопротивлением воздухопроницанию. Нормальное влажностное состояние конструкций достигается уменьшением начального влагосодержания материала и устройством влагоизоляции , а в слоистых конструкциях, кроме того, — целесообразным расположением конструктивных слоев, выполненных из материалов с различными свойствами.

  Сопротивление теплопередаче должно быть достаточно высоким, с тем чтобы в наиболее холодный период года обеспечивать гигиенически допустимые температурные условия на поверхности конструкции, обращенной в помещение. Теплоустойчивость конструкций оценивается их способностью сохранять относительное постоянство температуры в помещениях при периодических колебаниях температуры воздушной среды, граничащей с конструкциями, и потока проходящего через них тепла. Степень теплоустойчивости конструкции в целом в значительной мере определяется физическими свойствами материала, из которого выполнен внешний слой конструкции, воспринимающий резкие колебания температуры. При расчёте теплоустойчивости применяются методы С. т., основанные на решении дифференциальных уравнений для периодически изменяющихся условий теплообмена. Нарушение одномерности передачи тепла внутри ограждающих конструкций в местах теплопроводных включений, в стыках панелей и углах стен вызывает нежелательное понижение температуры на поверхностях конструкций, обращенных в помещение, что требует соответствующего повышения их теплозащитных свойств. Методы расчёта в этих случаях связаны с численным решением дифференциального уравнения двумерного температурного поля (Лапласа уравнения ).

  Распределение температур в ограждающих конструкциях зданий изменяется и при проникновении внутрь конструкций холодного воздуха. Фильтрация воздуха происходит в основном через окна, стыки конструкций и др. неплотности, но в некоторой степени и сквозь толщу самих ограждений. Разработаны соответствующие методы расчёта изменений температурного поля при установившейся фильтрации воздуха. Сопротивление воздухопроницанию у всех элементов ограждений должно быть больше нормативных величин, установленных Строительными нормами и правилами .

  При изучении влажностного состояния ограждающих конструкций в С. т. рассматриваются процессы переноса влаги, происходящие под влиянием разности потенциалов переноса. Перенос влаги в пределах гигроскопической влажности материалов происходит в основном вследствие диффузии в парообразной фазе и в адсорбированном состоянии; за потенциал переноса в этом случае принимается парциальное давление водяного пара в воздухе, заполняющем поры материала. В СССР получил распространение графоаналитический метод расчёта вероятности и количества конденсирующейся внутри конструкций влаги при диффузии водяного пара в установившихся условиях. Более точное решение для нестационарных условий может быть получено решением дифференциальных уравнений переноса влаги, в частности с помощью различных устройств вычислительной техники, в том числе использующих методы физической аналогии (гидравлические интеграторы).

  Лит.: Лыков А. В., Теоретические основы строительной теплофизики, Минск, 1961; Богословский В. Н., Строительная теплофизика, М., 1970; Фокин К. Ф., Строительная теплотехника ограждающих частей зданий, 4 изд., М., 1973; Ильинский В. М., Строительная теплофизика, М., 1974.

  В. М. Ильинский.

Строительная физика

Строи'тельная фи'зика, совокупность научных дисциплин (разделов прикладной физики ), рассматривающих физические явления и процессы, связанные со строительством и эксплуатацией зданий и сооружений, и разрабатывающих методы соответствующих инженерных расчётов. Основными и наиболее развитыми разделами С. ф. являются строительная теплотехника , строительная акустика , строительная светотехника (см. Светотехника ), изучающие закономерности переноса тепла, передачи звука и света (т. е. явлений, непосредственно воспринимаемых органами чувств человека и определяющих гигиенические качества окружающей его среды) с целью обеспечения в зданиях (сооружениях) необходимых температурно-влажностных, акустических и светотехнических условий. Получают развитие и др. разделы С. ф. — теория долговечности строительных конструкций и материалов, строительная климатология, строительная аэродинамика. Вопросы прочности, жёсткости и устойчивости зданий и сооружений рассматриваются в особом разделе прикладной физики — строительной механике .

  При решении задач С. ф. используются: теоретические расчёты на основе устанавливаемых общих закономерностей; методы моделирования , с помощью которых исследуемые процессы воспроизводятся или в измененном масштабе, или на базе известных аналогий; лабораторные испытания элементов конструкций (например, в камерах искусственного климата); натурные наблюдения и измерения в сооруженных объектах. Развитие С. ф. обеспечивается наличием теоретических и экспериментальных данных современной физики и физической химии .

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*