KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (АТ)

БСЭ БСЭ - Большая Советская Энциклопедия (АТ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (АТ)" бесплатно, без регистрации.
Перейти на страницу:

  Оптические, акустические и электрические явления в А. Распространение электромагнитного излучения в А. связано с возникновением различных явлений, обусловленных поглощением и рассеянием света и рефракцией (искривлением траектории светового луча). Хорошо известны явления радуги и венцов, возникающие в результате рассеяния солнечного света на каплях воды. Гало и венцы наблюдаются при рассеянии солнечной радиации кристаллами льда. Рассеянием света обусловлены видимая сплюснутость небесного свода и голубой цвет неба. Явление рефракции света приводит к образованию миражей. Оптическая нестабильность А. — важный фактор, ограничивающий возможность астрономических наблюдений. Условия распространения света в А. определяют видимость предметов. Прозрачность А. на различных длинах волн определяет дальность распространения излучения лазеров, что важно с точки зрения применения лазеров для связи. Ослабление А. инфракрасного излучения влияет на функционирование различных устройств и приборов инфракрасной техники. Для исследований оптических неоднородностей стратосферы и мезосферы важное значение имеет явление сумерек. Например, фотографирование сумерек с космических кораблей позволяет обнаруживать аэрозольные слои. Все эти вопросы, а также многие другие изучает атмосферная оптика. Рефракция и рассеяние радиоволн обусловливают возможности радиоприёма (см. Распространение радиоволн).

  Изучаемое в атмосферной акустике распространение звука в А., зависящее от пространственного распределения температуры и скорости ветра, представляет интерес для разработки косвенных методов зондирования верхних слоев А. Так, например, наблюдения зон слышимости звука при искусств, взрыве позволили впервые обнаружить увеличение температуры с высотой в стратосфере. Применение ракетного акустического метода дало возможность получить богатую информацию о ветрах в стратосфере и мезосфере.

  Фундаментальная проблема в исследованиях атмосферного электричества — наличие отрицательного заря да Земли и обусловленного им электрического поля А. Важная роль в этой проблеме принадлежит образованию облаков и грозового электричества. Возникновение грозовых разрядов влечёт за собой появление молний. Частое возникновение грозовых разрядов вызвало необходимость разработки методов грозозащиты зданий, сооружений, линий электропередач и связи. Особую опасность это явление представляет для авиации. Грозовые разряды вызывают атмосферные радиопомехи, получившие название атмосфериков. В периоды резкого увеличения напряжённости электрического поля наблюдаются светящиеся разряды, возникающие на остриях и острых углах предметов, выступающих над земной поверхностью, на отдельных вершинах в горах и т. п. (Эльма огни). Под влиянием процессов ионизации различного происхождения А. всегда ионизована и содержит сильно изменяющиеся в зависимости от конкретных условий количества лёгких и тяжёлых ионов, которые обусловливают электрическая проводимость А. Главными ионизаторами земной поверхности являются излучения радиоактивных веществ, содержащихся в земной коре, в А., а также космические лучи. В верхних слоях А. ионизация обусловлена ультрафиолетовой, корпускулярной и рентгеновской солнечной радиацией. Именно эти факторы в основном определяют структуру ионосферы, режим которой зависит от условий солнечной активности.

  Изучение А. Хотя изучение А. началось ещё в античное время, наука об А. — метеорология — сложилась только в 19 в. В состав метеорологии входит ряд дисциплин, которые различаются по применяемым в них методам исследований и по изучаемым объектам. Сюда относятся: физика атмосферы, химия атмосферы, климатология, синоптическая метеорология, динамическая метеорология и др. Влияние атмосферных факторов на биологические процессы изучается биометеорологией, включающей с.-х. метеорологию и биометеорологию человека. Классификация этих дисциплин окончательно не установилась и находится в стадии развития.

  Для наблюдения за А. на земной поверхности создана обширная сеть метеорологических станций и постов, оборудованных стандартными метеорологическими приборами и аэрологическими приборами, в труднодоступных районах устанавливаются автоматические метеорологические станции. Важное значение в системе наземных метеорологических наблюдений приобрела радиолокация, позволяющая обнаруживать и исследовать облака и осадки, турбулентные и конвективные образования в А., измерять скорость и направление ветра на высотах (см. Радиолокация в метеорологии). Широко применяется также пеленгация грозовых очагов путём регистрации атмосфериков. Важная роль в метеорологических наблюдениях принадлежит вертикальным зондированиям А. при помощи радиозондов для измерений атмосферного давления, скорости и направления ветра, температуры, влажности воздуха в свободной А.

  Для изучения различных характеристик А. применяются самолёты и автоматические аэростаты, например при исследовании облаков и разработке методов активных воздействий на них, а также для измерений в области актинометрии, атмосферной оптики и атмосферного электричества. В период Международного геофизического года (1957—58) и в последующие годы началось использование ракет метеорологических для измерений температуры и атмосферных давления в верхней стратосфере и мезосфере. Важнейшим средством получения метеорологической информации, особенно существенным для акватории океанов и территорий труднодоступных районов, стали спутники метеорологические.

  Лит.: Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967; Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958; Зверев А. С., Синоптическая метеорология и основы предвычисления погоды, Л., 1968; Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964; Тверской П. Н., Курс метеорологии, Л., 1962; Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965; Будыко М. И., Тепловой баланс земной поверхности, Л., 1956; Кондратьев К. Я., Актинометрия, Л., 1965; Хвостиков И. А., Высокие слои атмосферы, Л., 1964; Мороз В. И., Физика планет, М., 1967; Тверской П. Н., Атмосферное электричество, Л., 1949; Шишкин Н. С., Облака, осадки и грозовое электричество, М., 1964; Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966; Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

  М. И. Будыко, К. Я. Кондратьев.

Вертикальное распределение температуры в атмосфере и связанная с этим терминология.

Схема строения атмосферы: 1 — уровень моря; 2 — высшая точка Земли — г. Джомолунгма (Эверест), 8848 м ; 3 — кучевые облака хорошей погоды; 4 — мощно-кучевые облака; 5 — ливневые (грозовые) облака; 6 — слоисто-дождевые облака; 7 — перистые облака; 8 — самолёт; 9 — слой максимальной концентрации озона; 10 — перламутровые облака; 11 — стратостат; 12 — радиозонд; 1З — метеоры; 14 — серебристые облака; 15 — полярные сияния; 16 — американский самолёт-ракета Х-15; 17, 18, 19 — радиоволны, отражающиеся от ионизованных слоев и возвращающиеся на Землю; 20 — звуковая волна, отражающаяся от тёплого слоя и возвращающаяся на Землю; 21 — первый советский искусственный спутник Земли; 22 — межконтинентальная баллистическая ракета; 23 — геофизические исследовательские ракеты; 24 — метеорологические спутники; 25 — космические корабли «Союз-4» и «Союз-5»; 26 — космические ракеты, уходящие за пределы атмосферы, а также радиоволна, пронизывающая ионизованные слои и уходящая из атмосферы; 27, 28 — диссипация (ускальзывание) атомов Ни Не; 29 — траектория солнечных протонов Р; 30 — проникновение ультрафиолетовых лучей (длина волны l > 2000  и l < 900  ).

Атмосфера кабины

Атмосфе'ра каби'ны космического корабля, искусственная газовая среда в замкнутом объёме герметической кабины космического летательного аппарата. Для человека оптимальна А. к., полностью соответствующая по физическим свойствам и химическому составу земной атмосфере. А. к. может быть одногазовой — из газообразного кислорода при избыточном давлении от 33 до 56 кн/м2 (1 кн/м2 = 7,5 мм рт. ст.), или многогазовой — из нескольких газов (O2, N2CO2 и др.). Преимущество одногазовой А. к. — некоторое уменьшение возможности декомпрессионных расстройств и снижение эффекта разгерметизации кабины при выходе космонавтов в космическое пространство или на поверхность другого небесного тела. Но при применении одногазовой А. к. должно быть повышено давление кислорода по сравнению с его парциальным давлением в земной атмосфере, что сопряжено с повышенной пожарной опасностью. Кроме того, при одногазовой А. к. усложняется система терморегуляции. При длительном (более 2—3 нед.) воздействии на человека одногазовой А. к. отмечаются некоторые нарушения физиологических функций человека, снижающие устойчивость организма к действию факторов космического полёта, поэтому в длительном полёте использование одногазовой А. к. недопустимо.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*