БСЭ БСЭ - Большая Советская Энциклопедия (КВ)
В теории вероятностей К. о. ох случайной величины Х (от её математического ожидания) называют квадратный корень из дисперсии .
К. о. употребляют как меру качества статистических оценок и называют в этом случае квадратичной ошибкой. См. Ошибок теория.
Квадратичное среднее
Квадрати'чное сре'днее, число (s), равное корню квадратному из среднего арифметического квадратов данных чисел a1, a2,..., an:
.
Квадратичный вычет
Квадрати'чный вы'чет, понятие теории чисел. К. в. по модулю m — число а, для которого сравнение x2 º а (mod m) имеет решение: при некотором целом х число x2—a делится на m; если это сравнение не имеет решений, то а называют квадратичным невычетом. Например, если m = 11, то число 3 будет К. в., так как сравнение x2 º 3 (mod 11) имеет решения х = 5, х = 6, а число 2 будет невычетом, т.к. не существует чисел х, удовлетворяющих сравнению x2 º 2 (mod 11). К. в. являются частным случаем вычетов степени n для n = 2. Если m равно простому нечётному числу р, то среди чисел 1, 2,..., р—1 имеется (р—1)/2 К. в. и (р—1)/2 квадратичных невычетов. Для изучения К. в. по простому модулю р вводится Лежандра символ , определяемый так: если а взаимно просто с р, то полагают = 1, когда а — К. в., и = — 1, когда а — квадратичный невычет. Основной теоремой в этом круге вопросов является так называемый закон взаимности К. в.: если р и q — простые нечётные числа, то
.
Эту закономерность открыл около 1772 Л. Эйлер, современная формулировка дана А. Лежандром, полное доказательство впервые дал в 1801 К. Гаусс. Удобным обобщением символа Лежандра является Якоби символ. Закон взаимности К. в. получил многочисленные обобщения в теории алгебраических чисел. И. М. Виноградовыми др. учёными изучалось распределение К. в. и суммы значений символа Лежандра.
Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972.
Квадратно-гнездовой посев
Квадра'тно-гнездово'й посе'в, способ посева с.-х. культур, при котором семена размещают по несколько штук в углах квадрата (прямоугольника). При К.-г. п. растения на поле размещаются равномернее и лучше используют почвенное и воздушное питание и солнечный свет; сокращается расход семян; создаются условия для механизированной обработки междурядий в продольном и поперечном направлениях, позволяющей поддерживать почву рыхлой и чистой от сорняков; значительно снижаются затраты ручного труда. К.-г. п. применяют для посева кукурузы, подсолнечника, хлопчатника, клещевины, некоторых овощных и др. культур. В СССР К.-г. п. впервые начал применяться в 1932—35 для кукурузы (в УССР). Расстояние между гнёздами и количество семян в гнезде устанавливают в зависимости от биологических особенностей культуры, почвенных условий и запасов влаги в почве. Например, в большинстве районов возделывания кукурузы на зерно и подсолнечника на семена лучшие результаты получают при расстоянии между гнёздами 70´70 см и 2 растениях в гнезде. Для К.-г. п. сельскохозяйственных культур используют навесные СКНК-4, СКНК-6, СКНК-8, СТХ-4А, СТХ-4Б и др. квадратно-гнездовые сеялки. Для точного высева нужного числа растений в гнезде семена калибруют и учитывают их полевую всхожесть. См. Посев.
С. А. Воробьев.
Квадратное письмо
Квадра'тное письмо' (древнеевр. — кетаб мерубба), ответвление западносемитского письма, восходит к арамейскому (с 3 в. до н. э.), в основном сформировалось к 2—1 вв. до н. э. Письмо арамейских и древнееврейских надписей, литературы на древнееврейском языке, современных языков иврит, идиш и ладино (испано-еврейский язык Средиземноморья). Курсивные разновидности: ашкенази (Восточная Европа), сефарди (Средиземноморье), раши (раввинское письмо, в Италии, употребляется в религиозных текстах). Письмо первоначально чисто консонантное. В 6—8 вв. создаётся несколько систем огласовок с помощью диакритик; основная, ныне принятая, — тивериадская. См. Еврейское письмо.
Лит.: Дирингер Д., Алфавит, пер. с англ., М., 1963, с. 311—319.
Квадратное уравнение
Квадра'тное уравне'ние, уравнение вида ax2 + bx + с = 0, где а, b, с — какие-либо числа, называются коэффициентами уравнения. К. у. имеет два корня, которые находятся по формулам:
Выражение D = b2 — 4ac называется дискриминантом К. у. Если D > 0, то корни К. у. действительные различные, если D < 0, то корни сопряжённые комплексные, если D = 0, то корни действительные равные. Имеют место формулы Виета: x1 +х2 = —b/a, x1x2 = с/а, связывающие корни и коэффициенты К. у. Левую часть К. у. можно представить в виде а (х — х1)(х — x2). Функцию у = ax2 + bx + с называют квадратным трёхчленом, её графиком служит парабола с вершиной в точке М (—b/2a; с — b2/4a) и осью симметрии, параллельной оси Оу; направление ветвей параболы совпадает со знаком a. Решение К. у. было известно в геометрической форме ещё математикам древности.
Квадратура (в астрономии)
Квадрату'ра в астрономии, одна из характерных конфигураций, т. е. взаимных положений, Солнца, планет, Луны на небесной сфере. Подробнее см. Конфигурации в астрономии.
Квадратура круга
Квадрату'ра кру'га, задача о разыскании квадрата, равновеликого данному кругу. Под К. к. понимают как задачу точного построения квадрата, равновеликого кругу, так и задачу вычисления площади круга с тем или иным приближением. Задачу о точной К. к. пытались решить первоначально с помощью циркуля и линейки. Математика древности знала ряд случаев, когда с помощью этих инструментов удавалось преобразовать криволинейную фигуру в равновеликую ей прямолинейную (см., например, Гиппократовы луночки). Попытки решения задачи о К. к., продолжавшиеся в течение тысячелетий, неизменно оканчивались неудачей. С 1775 Парижская АН, а затем и др. академии стали отказываться от рассмотрения работ, посвященных К. к. Лишь в 19 в. было дано научное обоснование этого отказа: строго установлена неразрешимость К. к. с помощью циркуля и линейки.
Если радиус круга равен г, то сторона равновеликого этому кругу квадрата равна . Таким образом, задача сводится к следующей: осуществить построение, в результате которого данный отрезок (r) был бы умножен на данное число (). Однако графическое умножение отрезка на число осуществимо циркулем и линейкой, если упомянутое число — корень алгебраического уравнения с целыми коэффициентами, разрешимого в квадратных радикалах. Т. о., окончательная ясность в вопросе о К. к. могла быть достигнута на пути изучения арифметической природы числа p. В конце 18 в. нем. математиком И. Ламбертом и французским математиком А. Лежандром была установлена иррациональность числа p. В 1882 нем. математик Ф. Линдеман доказал, что число p (а значит и ) трансцендентно, т. е. не удовлетворяет никакому алгебраическому уравнению с целыми коэффициентами. Теорема Линдемана положила конец попыткам решения задачи о К. к. с помощью циркуля и линейки. Задача о К. к. становится разрешимой, если расширить средства построения. Уже греч. геометрам было известно, что К. к. можно осуществить, используя трансцендентные кривые; первое решение задачи о К. к. было выполнено Диностратом (4 в. до н. э.) при помощи специальной кривой — так называемые квадратрисы (см. Линия). О задаче нахождения приближённого значения числа p см. в ст. Пи.