KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)

БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (НЕ)" бесплатно, без регистрации.
Перейти на страницу:

  Соч.: Твори. [Вступ. ст. О. I. Бiлецького], т. 1—4, К., 1956; Зiбрання творiв, [Вступ. ст. Н. Є. Крутiковой], т. 1—8, К., 1965—67; в рус. пер. — Избр. произведения, т. 1—2, М., 1956.

  Лит.: Франко I., Лiтература, iï завдання i найважнiшi цiхи, Твори, т. 16, К., 1955; его же, «Микола Джеря», повiсть Iвана Нечуя, там же, т. 17, К., 1955; Крутiкова Н. Є., Творчiсть I. С. Нечуя-Левицького. [Статтi та матерiали], К., 1961; Походзiло М. У., Iван Нечуй-Левицький, К., 1960.

  С. П. Князева.

И. С. Нечуй-Левицкий. «Микола Джеря» (Киев, 1959). Илл. В. В. Полтавца.

И. С. Нечуй-Левицкий.

Нешавские статуты 1454

Неша'вские стату'ты 1454, Нешавские привилеи, привилегии, полученные шляхтой от польского короля Казимира IV под г. Нешава (Nieszawa); были выданы в отдельности для Малой Польши, Великой Польши, земель Серадзской, Хелминьской, Саноцкой и Перемышльской (в основу легли привилегии, данные великопольской шляхте в сентябре 1454 в лагере под Церквицей). Были получены в разгар войны Польши с Тевтонским орденом за поддержку, которую шляхта оказала королю в войне и в его борьбе с магнатами. Отменяли исключительное право магнатов замещать высшие государственные должности, регулировали судопроизводство и местное управление (находившиеся в руках магнатов) в пользу шляхты. Одновременно Н. с. означали и серьёзное ограничение королевской власти. Издание законов, решение вопросов войны и мира могли, согласно Н. с., осуществляться только с согласия шляхетских сеймиков; шляхта освобождалась от суда королевских чиновников (за исключением особых случаев). Н. с. частично ограничивали права городов (в малопольской редакции был пункт, распространявший юрисдикцию шляхетского суда на города). Явились важной вехой в формировании польской шляхетской «республики».

  Лит.: Historia państwa i prawa Polski, 2 wyd., t. 1, Warsz., 1965.

Нештатные работники

Нешта'тные рабо'тники, см. Работники нештатные .

Нея (город в Костромской обл.)

Не'я, город (до 1958 — посёлок) областного подчинения, центр Нейского района Костромской области РСФСР. Расположен на правом берегу р. Нея (приток р. Унжа). Ж.-д. станция на линии Буй — Котельнич. Крупный центр лесопильно-деревообрабатывающей промышленности (лесозавод, завод «Музлесдрев», леспромхоз). Авторемонтный, маслосыродельный заводы, льнозавод, швейная фабрика.

Нея (река в Костромской обл.)

Не'я, река в Костромской области РСФСР, правый приток р. Унжа (бассейн Волги). Длина 253 км, площадь бассейна 6060 км2 . Берёт начало на Галичской возвышенности. Питание смешанное, с преобладанием снегового. Средний расход воды в 38 км от устья 45,5 м3 /сек. Замерзает в ноябре, вскрывается в апреле. Сплавная. На реке — г. Нея.

Неявные функции

Нея'вные фу'нкции, функции, заданные соотношениями между независимыми переменными, не разрешенными относительно последних; эти соотношения являются одним из способов задания функции. Например, соотношение

  x2 + y2 - 1 = 0

задаёт Н. ф.

  y = у (х ),

соотношения

  x = rcosjsinJ, y = rsinjsinJ, z = rcosJ

задают Н. ф.:

  r = r(x , у, z ), j = j(x , y, z ), J = J(х, у, z ).

В простейших случаях соотношения, задающие Н. ф., могут быть разрешены в классе элементарных функций , т. е. удаётся найти элементарные функции, удовлетворяющие этим соотношениям. Так, в первом из приведённых выше примеров имеем:

а во втором:

  Вообще же таких элементарных функций найти не удаётся. Н. ф. могут быть как однозначными, так и многозначными. Не всякое соотношение (или система соотношений) между переменными задаёт Н. ф. Так, если ограничиваться лишь действительными значениями переменных, то соотношение x2 + y2 + 1 = 0 не задаёт Н. ф., так как не удовлетворяется ни одной парой действительных значений х и у; соотношение же exy = 0 вообще не удовлетворяется ни одной парой действительных или комплексных значений х и у. Теорема существования Н. ф. в её простейшей формулировке утверждает, что если функция F (x, y ) обращается в нуль при паре значений х = x0 , у = y0 [F (x0 , y0 ) ¹ 0] и дифференцируема в окрестности точки (x0 , y0 ), причём F’x (х, у ) и F’y (х, у ) непрерывны в этой окрестности и F’y (x0 , y0 ) ¹ 0, то в достаточно малой окрестности точки x 0 существует одна и только одна однозначная непрерывная функция у = у (х ), удовлетворяющая соотношению F (x, y ) = 0 и обращающаяся в y 0 при x = x 0 ; при этом y '(x ) = —F’x (x, y )/F’y (x, у ).

  Для приближённого вычисления значений Н. ф. вблизи точки x 0 , где её значение y 0 уже известно, широко применяются степенные ряды. Так, если F (x, у ) аналитическая функция [т. е. может быть разложена в окрестности точки (x 0 , y 0 ) в сходящийся двойной степенной ряд] и F’y (x0 , y 0 ) ¹ 0, то Н. ф., заданная соотношением F (x, y ) = 0, может быть получена в виде степенного ряда

сходящегося в некоторой окрестности точки х = х0 . Коэффициенты ck , k = 1, 2,..., могут быть найдены либо подстановкой этого ряда в соотношение F (x , у ) = 0, либо последовательным дифференцированием этого соотношения по х. Например, если Н. ф. задана соотношением

  y5 + xy - 1 = 0, x 0 = 0, y0 = 1,

то

и

откуда

c 0 = 1, c 1 = —1 /5 c 0 -3 , c 2 = —2c 1 2 c 0 -1 — 1 /5 c 1 c 0 -4 = —1 /25 и т.д.

  Если соотношение F (x, у ) = 0 может быть представлено в виде у = а + х j(у ), где j(y ) — аналитическая функция, то Н. ф. у = у (х ), заданная этим соотношением и принимающая значение а при х = 0, разлагается в ряд Лагранжа

сходящийся в некоторой окрестности точки х = 0. Например, из соотношения у = а + x siny (так называемое Кеплера уравнение ) можно получить:

  Вычисление значений Н. ф. в общем случае может быть произведено по методу последовательных приближений.

  Лит.: Смирнов В. И., Курс высшей математики, т. 1, 22 изд., М., 1967; т. 3, ч. 2, 8 изд., М., 1969; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Кудрявцев Л. Д., Математический анализ, т. 2, М., 1970.

Неясыти

Нея'сыти (Strix), род птиц отряда сов. 12 видов. Распространены в Европе, Северной Африке, Азии и Америке. В СССР — 3 вида. Обыкновенная Н. (S. aluco) — длина тела 41—46 см, весит 0,45—0,68 кг; обитает в лесах и парках в средней полосе и на Ю. Русской равнины и Юго-Западной Сибири, на Кавказе горах Средней Азии. Уральская, или длиннохвостая, Н. (S. uralensis) — длина тела 50—58 см, весит 0,56—0,95 кг, и бородатая Н. (S. nebulosa) — длина тела около 65 см, весит 0,7—1,2 кг, населяют хвойные леса Русской равнины, Сибири и Дальнего Востока. Зимой совершают нерегулярные кочёвки. Гнездятся в дуплах, старых гнёздах сорок, ворон и др. птиц, иногда на земле. В кладке 3—4 белых яйца; насиживает самка около 1 месяца; птенцов кормят оба родителя. Питаются Н. главным образом мышевидными грызунами, реже птицами, лягушками, ящерицами или насекомыми.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*