БСЭ БСЭ - Большая Советская энциклопедия (ГЕ)
238U®206Pb + 84He,
235U®207Pb + 74He,
232Th®208Pb + 64He,
®40Ar
40K + e®Ca + b
87Rb®87Sr + b,
187Re®187Os + b.
В зависимости от конечных продуктов распада выделяют следующие методы ядерной Г: свинцовый (уран-торий-свинцовый), гелиевый, аргоновый (аргон-калиевый), кальциевый, стронциевый (стронциево-рубидиевый) и осмиевый. Наиболее широкое применение из них получили свинцовый, аргоновый и стронциевый.
Свинцовый метод основан на исследованиях радиогенного свинца в минералах (уранините, монаците, цирконе, ортите). Он является наиболее достоверным, поскольку решение задачи о возрасте урано-ториевого минерала достигается по трем независимым уравнениям:
Pb, U и Th обозначают содержание в минералах изотопов свинца, урана и тория; l1, l2 и l3— константы распада изотопов 238U, 235U, 232Th.
Если разделить уравнение (1) на (2), то получится уравнение
Это уравнение даёт наиболее близкие к истинным значения возраста, что связано с малой его зависимостью от возможных потерь урана и свинца минералом на протяжении его геологической жизни. Оно позволяет вычислить возраст только по одному измеренному отношению , поскольку в настоящее время отношение равно 137,7 и практически во всех минералах и горных породах одинаково. Совпадение значений возраста, полученных по всем четырём уравнениям, свидетельствует о хорошей сохранности исследованного минерала, правильности проведённых анализов и достоверности вычисленного абсолютного возраста. Измерение изотопного состава свинца производится на масс-спектрометре (см. Масс-спектроскопия).
Однако чаще различные уравнения дают разные значения возраста одного и того же минерала. В этом случае для установления истины прибегают к построению диаграммы в координатах 206Pb/238U: 207Pb/235U (см. ниже). На неё наносят кривую OA (конкордия), вычисленную теоретически для разных возрастов, и прямую OB (изохрона), на которую ложатся результаты измерений для нескольких исследованных одновозрастных минералов. Истинным возрастом считается значение на пересечении кривой OA с прямой OB.
Поскольку все радиоактивные минералы содержат наряду с радиогенным свинцом примесь свинца обыкновенного, при вычислении возраста приходится вносить поправку. Для того, чтобы избежать этого, был предложен метод определения возраста, основанный на измерении изотопного состава свинца в нескольких минералах одной и той же породы с целью построения по полученным результатам изохроны. Диаграмма строится в координатах 207Pb/204Pb; 206Pb /204Pb. Данные изотопного состава свинца минералов, если они одновозрастны, ложатся на одну прямую — изохрону. Тангенс угла наклона этой прямой к оси абсцисс является отношением 207Pb/206Pb, по которому согласно формуле определяется возраст породы.
Может быть вычислен также возраст обычных свинцовых минералов, если известен изотопный состав Pb. Обычный свинец состоит из смеси четырёх изотопов 204Pb, 206Pb, 207Pb, 208Pb, из которых 204Pb не связан с радиоактивным распадом и его содержание условно принимается за единицу. Остальные изотопы порождаются и постепенно накапливаются в результате радиоактивного распада урана и тория, причём темп прироста того или иного изотопа определяется соответствующей константой распада. Поэтому свинец разных эпох имеет различный изотопный состав: свинец более древних эпох содержит пониженное количество изотопов с массами 206, 207, 208, а в свинце более молодых эпох количество их увеличено относительно 204Pb. Возраст, вычисленный по изотопному составу рудного свинца, принято называть модельным возрастом, поскольку он справедлив лишь для такой модели (системы), в которой отношение Pb: U: Th изменяется во времени только вследствие радиоактивного распада. В действительности имеют место как совпадения модельного возраста с истинным для ряда месторождений, так и существенные расхождения, которые становятся более частыми в молодых геологических формациях.
Аргоновый метод. Основан на радиогенном накоплении аргона в калиевых минералах. Будучи более доступным благодаря лёгкости получения необходимого материала (калиевые минералы) и относительно простой его обработке, пользуется большой популярностью. Отрицательной чертой его является отсутствие внутреннего контроля (одно уравнение). Как показали многочисленные экспериментальные исследования, калиевые минералы сравнительно легко теряют радиогенный аргон. В меньшей степени это относится к слюдам и в значительно большей степени к полевым шпатам, что делает их малопригодными для определения возраста. Важной положительной чертой аргон-калиевого метода является возможность применения его для определения возраста осадочных отложений по минералу глаукониту. Опыт определения возраста неизмененных глауконитов как молодого (мезокайнозойского), так и древнего возраста показал, что глауконит хорошо удерживает аргон и калий вне зависимости от времени. Несмотря на свою сравнительно малую устойчивость, минерал этот удобен тем, что даже при небольших изменениях, ставящих под сомнение пригодность данного образца, он сразу же обнаруживает изменение окраски и химического состава.
Стронциевый метод, основанный на радиоактивном распаде 87Rb и превращении его в 87Sr, в СССР не приобрёл пока большого распространения. Причина заключается в том, что в районах с высоким общим содержанием рубидия последний может быть привнесён в минералы значительно позже времени их образования, в результате чего при определении возраста этих минералов возможны сильные искажения в сторону «омоложения»; наоборот, в районах с интенсивным щелочным метасоматозом рубидий легко выносится из минералов и тогда значение возраста по 87Sr/87Rb становится сильно преувеличенным. Обычно при измерении возраста по 87Sr/87Rb из гранита выделяют составляющие его минералы и в каждом из них определяют 87Sr/86Sr и 87Rb/86Sr. На диаграмме в координатах 87Sr/86Sr: 87Rb/86Sr данные анализов отдельных минералов гранита располагаются на одной прямой — изохроне, вытянутой вправо вверх. Тангенс угла наклона изохроны с осью абсцисс представляет собой величину 87Sr/87Rb, определяющую возраст данной породы.
Для оценки возраста геологических объектов в пределах 60000 лет огромное значение приобрёл радиоуглеродный метод, основанный на том, что в атмосфере Земли под воздействием космических лучей за счёт обильного азота идёт ядерная реакция 14N + n= 14С + Р; вместе с тем 14С радиоактивен и имеет период полураспада более 5700 лет. В атмосфере установилось равновесие между синтезом и распадом этого изотопа, вследствие чего содержание 14С в воздухе постоянно. Растения и животные при их жизни всё время обмениваются углеродом с атмосферой, поэтому концентрация в них 14С поддерживается на постоянном уровне; в мёртвых организмах обмен с атмосферой прекращается и концентрация в них 14С начинает падать по закону радиоактивного распада. Измеряя содержание 14С с помощью высокочувствительной радиометрической аппаратуры, можно установить возраст органических остатков. Так, например, по костям и шкуре мамонта на Таймыре был установлен возраст его захоронения (11000 лет). Тот же метод помог датировать эпохи оледенения в Европе и Северной Америке, определить возраст следов древних человеческих культур и т.д.
Лит.: Страхов Н. М., Основы исторической геологии, 3 изд., ч. 1—2. М. — Л., 1948; Старик И. Е., Ядерная геохронология, М. — Л., 1961; Герлинг Э. К., Современное состояние аргонового метода определения возраста и его применение в геологии, М. — Л., 1961; Данбар К., Роджерс Дж., Основы стратиграфии, пер. с англ., М., 1962; Казаков Г. А., Тугаринов А. И., Методика определения абсолютного возраста горных пород, в кн.: Верхний докембрий, М., 1963; Войткевич Г. В., Возраст Земли и геологическое летосчисление, М., 1965; Тугаринов А. И., Войткевич Г. В., Докембрийская геохронология материков, М., 1966; Афанасьев Г. Д., Геохронологическая шкала в абсолютном летосчислении, в кн.: Проблемы геохимии и космологии. Международный геологический конгресс, 23 сессия, М., 1968.
Б. М. Келлер, А. И. Тугаринов, Г. В. Войткевич.
Рис. к ст. Геохронология.
Геоцентрическая система мира
Геоцентри'ческая систе'ма ми'ра (от гео… и центр), существовавшее в древности представление, согласно которому Земля неподвижно покоится в центре мира, а все небесные светила движутся вокруг неё. См. Системы мира.