БСЭ БСЭ - Большая Советская Энциклопедия (ХЛ)
Минимально действующая концентрация 0,0001 мг/л; непереносимая 0,002 мг/л (2 мин ). Защитой служит противогаз . Был предложен как отравляющее вещество в конце 1-й мировой войны 1914—18, но в боевой обстановке испытан не был.
Хлорбензид
Хлорбензи'д, хлорпарацид, 4-хлорфенил-4'-хлорбензилсульфид (4-СlC6 H4 SCH2 C6 H4 Cl-4), химический препарат для борьбы с растительноядными клещами (акарицид ).
Хлорбензилат
Хлорбензила'т [(ClC6 H4 )2 C(OH)COOC2 H5 ], химический препарат для борьбы с растительноядными клещами (акарицид ).
Хлорбензол
Хлорбензо'л, бесцветная жидкость с характерным запахом, tkип 131,7°C; практически нерастворим в воде, смешивается со многими органическими растворителями. В промышленности Х. получают каталитическим хлорированием бензола (75—85 °С, металлическое железо); используют его в производстве фенола , 4,4'-дихлордифенил-трихлорэтана (ДДТ), полупродуктов в синтезе красителей и как растворитель в лабораторной практике.
Хлорбутилкаучук
Хлорбутилкаучу'к, продукт хлорирования бутилкаучука .
Хлорелла
Хлоре'лла (Chlorella), род микроскопических одноклеточных зелёных водорослей из класса протококковых. Клетки шаровидные или эллипсоидные, с целлюлозной оболочкой, содержащие один пристенный хлоропласт с пиреноидом или без него и одно ядро; запасные продукты — крахмал и масло. Размножение автоспорами. В СССР около 10 видов, распространены повсеместно. Объект массового культивирования в качестве возможного источника пищи и корма, для биологической очистки сточных вод, регенерации воздуха в замкнутых экосистемах (на космических кораблях, подводных лодках).
Лит.: Музафаров А. М., Таубаев Т. Т., Селяметов Р. А., Хлорелла и ее использование в животноводстве, Таш., 1974; Андреева В. М., Род Chlorella. Морфология, систематика, принципы классификации, Л., 1975; Fott В., Nováková М., A monograph of the genus Chiorella. The fresh water species, в кн.: Studies in phycology, Prague, 1969.
Хлоридовозгонка
Хлоридовозго'нка, один из процессов хлорирования в цветной металлургии, имеющий целью отогнать образующиеся при обжиге хлориды металлов в газовую фазу и отделить их от непрохлорированной массы материала. Процесс основан на большой летучести хлоридов многих металлов и осуществляется при температурах, обеспечивающих высокое давление паров возгоняемых хлоридов и быстрое их улетучивание. Х. ведут в трубчатых и шахтных печах, электропечах, печах кипящего слоя. В качестве хлоринаторов применяют хлор, хлорид водорода, хлорид кальция, каменную соль и др. хлориды. Отходящие газы из хлоридовозгоночной печи пропускают через аппараты горячего пылеулавливания для отделения пыли от паров хлоридов и затем охлаждают для конденсации хлоридов металлов, которые улавливают в электрофильтрах или конденсаторах (сухой способ) либо в скрубберах (мокрый способ); свободный хлористый водород поглощают известковым молоком или раствором хлорида кальция и возвращают в «голову» процесса.
Достоинства Х.: высокое извлечение металлов, обусловленное большой химической активностью хлора; почти полное отделение цветных металлов от железа за одну операцию; возможность селективной отгонки тех или иных хлоридов металлов путём изменения состава газовой фазы; высокая степень сокращения, обеспечивающая получение из бедного сырья богатого продукта — хлоридов, из которых затем получают товарные металлы. Недостаток процесса: необходимость поддержания высокого парциального давления, достигаемого многократным избытком хлора, который находится в обороте.
Промышленное применение Х. получила в производстве титана, бериллия, циркония и др. редких металлов. Для получения титана брикеты из титановых шлаков с коксом при 700—800 °С продувают хлором в электрических шахтных печах или в хлораторах для хлорирования в расплаве. Восстановительная атмосфера обеспечивает практически полное хлорирование окислов титана и ряда др. металлов. Легковозгоняющиеся TiCl4 и SiCI4 конденсируются в виде жидкости, а AlCl3 , FeCI3 , VOCI3 — в виде твёрдой фазы; малолетучие хлориды кальция, магния, марганца вместе с непрохлорированными окислами остаются в твёрдом остатке. Х. начинает применяться и для извлечения тяжёлых цветных и драгоценных металлов. Так, пиритные огарки окатывают с хлоридом кальция и подвергают Х. при 1100—1200 °С в окислительной атмосфере. При этом возгоняют и улавливают свыше 94% меди, цинка, свинца, золота и серебра, а окислы железа, кремния, кальция и др. не хлорируются; обожжённые окатыши направляют в чёрную металлургию. Процессы Х. разрабатываются для селективного извлечения меди, олова, висмута, свинца, золота, серебра из сложного сульфидного сырья, для извлечения никеля, кобальта и марганца из окисленных никелевых руд и являются перспективными для переработки различных промышленных продуктов.
Лит.: Коршунов Б. Г., Стефанюк С. Л., Введение в хлорную металлургию редких элементов, М., 1970.
И. Д. Резник.
Хлориды
Хлори'ды, соединения хлора со всеми элементами, имеющими меньшее значение электроотрицательности, т. е. со всеми металлами и неметаллами, кроме кислорода и фтора (исключение — Х. азота, которые принято так называть, несмотря на то, что электроотрицательность азота больше, чем хлора).
Х. металлов (или соли соляной кислоты ) — твёрдые вещества, большинство из них плавится или возгоняется без разложения. В основном Х. металлов хорошо растворимы в воде; AgCl, CuCl, HgCl2 , TlCl и PbCl2 — малорастворимы. Х. щелочных и щёлочноземельных металлов имеют нейтральную реакцию. Растворы Х. др. металлов имеют кислую реакцию вследствие гидролиза, например: AlCl3 + 3H2 O = Al (OH)3 + 3HCl.
Х. неметаллов могут быть газообразными (HCl), жидкими (PCl3 ) или твёрдыми (PCl5 ). Они гидролизуются водой, например: PCl5 + 4H2 O = H3 PO4 + 5HCl.
Х. натрия, калия, магния, кальция широко распространены в природе (см. также Хлориды природные ). О свойствах, получении и применении Х. см. Алюминия хлорид , Калия хлорид , Натрия хлорид , Магния хлорид , Кальция хлорид , Титана галогениды и др.
Хлориды азота
Хлори'ды азо'та, хлорпроизводные аммиака (неорганические хлорамины ): монохлорамин NH2 CI, дихлорамин NHCl2 и трихлорамин (трёххлористый азот) MCl3 . Х. а. образуются при взаимодействии аммиака или солей аммония с хлором или хлорноватистой кислотой. NH2 CI — бесцветная маслянистая жидкость с резким запахом; tпл — 60 °С. При нагревании разлагается.
NHCl2 в свободном состоянии не выделен. NCl3 — ярко-жёлтая маслянистая жидкость с острым раздражающим запахом; плотность 1,653 г /см 3 , t пл — 40 °С,
t kип 71 °С. Под действием света медленно разлагается с выделением азота и хлора. NCl3 растворим в бензоле, сероуглероде, хлороформе; в воде нерастворим. Чувствителен к удару, взрывается при соприкосновении с органическими веществами, способными хлорироваться, например с каучуком, пробкой, жирами, скипидаром. Х. а. гидролизуются с образованием аммиака и хлорноватистой кислоты .
Лит. см. при ст. Хлор .
Хлориды природные
Хлори'ды приро'дные, класс минералов, солей соляной кислоты HCl. По составу, свойствам и условиям образования выделяют две группы Х. п. В первой группе (28 минералов) — растворимые водные и безводные хлориды Na, К, NH4 , Mg, Ca, Al, Mn и Fe. Главные минералы: галит NaCI, сильвин KCl, нашатырь NH4 CI, бишофит MgCl2 ×6H2 O, карналлит KMgCl3 ×6H2 O, тахгидрит CaMgCl4 ×12H2 O, риннеит NaK3 FeCl6 и др. Содержат 20—70% Cl. В основе кристаллических структур лежит плотнейшая кубическая упаковка атомов Cl. Атомы металлов расположены в октаэдрических пустотах. Химические связи в основном ионные. Кристаллизуются в кубической или тригональной системах. Обычно бесцветны; твердость по минералогической шкале 1—2, плотность 1600—3200 кг/м 3 . Гигроскопичны, хорошо растворяются в воде, частично в спирте; на вкус солёные или горькие. Слагают зернистые и плотные массы, прожилки и желваки в осадочных толщах; сростки кристаллов, налёты и корочки образуются в осадках озёр, солончаках и продуктах вулканической и фумарольной деятельности. Многие Х. п. широко используются в химической и пищевой промышленности, сельском хозяйстве. См. также ст. Калийные соли , Каменная соль .