KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (ДИ)

БСЭ БСЭ - Большая Советская Энциклопедия (ДИ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (ДИ)" бесплатно, без регистрации.
Перейти на страницу:

при помощи введения в качестве новых переменных составляющих u, v, w скорости.

  Наибольшее значение имеют системы, в которых число уравнений равно числу неизвестных функций. Система из n уравнений 1-го порядка с n неизвестными функциями, разрешённая относительно производных, имеет вид:

 

Решением системы Д. у. (а) называется система функций x1(t), x2(t), ..., xn (t), которая при подстановке в уравнения (а) обращает их в тождества. Часто встречаются системы вида (а), в которых правые части не зависят от t. В этом случае изучение системы (а) в основном сводится к изучению системы из (n - 1)-го уравнения, которую целесообразно записывать в симметричной форме

 

не предрешая вопроса о том, от какого из переменных х1, x2,..., xn мыслятся зависящими остающиеся n - 1 переменных. Считая х = (x1, x2,..., xn) вектором, можно записать систему (а) в виде одного векторного уравнения:

 

что позволяет широко пользоваться при изучении систем (а) аналогией с теорией одного уравнения 1-го порядка вида (Б). В частности, оказывается, что для систем (а) сохраняют силу основные результаты относительно существования и единственности решения задачи с начальными условиями: если в окрестности точки (t0, х10, x20, ..., xn0) все функции Fi непрерывны по совокупности переменных t, x1, x2, ..., xn и имеют ограниченные производные по переменным x1, x2, ..., xn, то задание начальных значений xi (t0) = xi0, i = 1, 2, ..., n, определяет одно, вполне определённое, решение системы (а). Этим объясняется то, что, вообще говоря, решение систем из n уравнений 1-го порядка с n неизвестными функциями зависит от n параметров.

  Для приведённых выше конкретных примеров Д. у. их общее решение удаётся выразить при помощи элементарных функций. Типы Д. у., допускающие такого рода решение, детально изучаются. Часто придерживаются более общей точки зрения, считая Д. у. «решённым», если искомая зависимость между переменными (и входящими в общее решение параметрами c1, c2, ...) может быть выражена при помощи элементарных функций и одной или нескольких операций взятия неопределённого интеграла («решение выражено в квадратурах»).

  Большой общностью обладают способы нахождения решений при помощи разложения их в степенные ряды. Например, если правые части уравнений (а) в окрестности точки (t0, x10, x20, ..., xn0) голоморфны (см. Аналитические функции), то решение соответствующей начальной задачи выражается функциями xi (t), разлагающимися в степенные ряды:

 

коэффициенты которых можно найти последовательным дифференцированием правых частей Д. у. (а) и сопоставлением коэффициентов при одинаковых степенях в левых и правых частях этих уравнений.

  Из специальных типов Д. у. особенно хорошо разработана теория линейных Д. у. и систем линейных Д. у. (см. Линейные дифференциальные уравнения).

  Для линейных Д. у. сравнительно просто решаются также вопросы «качественного» поведения интегральных кривых, т. е. их поведение во всей области задания Д. у. Для нелинейных Д. у., где нахождение общего решения особенно сложно, вопросы качественной теории Д. у. приобретают иногда даже доминирующее значение. После классических работ А. М. Ляпунова ведущую роль в качественной теории Д. у. играют работы советских математиков, механиков и физиков. В связи с этой теорией см. Динамическая система, Особая точка, Устойчивость, Предельный цикл.

  Большое значение имеет аналитическая теория Д. у., изучающая решения Д. у. с точки зрения теории аналитических функций, т. е. интересующаяся, например, расположением их особых точек в комплексной плоскости и т.п.

  Наряду с рассмотренной выше начальной задачей, в которой задаются значения искомых функций (а в случае уравнений старших порядков и их производных) в одной точке (при одном значении независимого переменного), находят широкое применение краевые задачи.

  Дифференциальные уравнения с частными производными. Типичной особенностью Д. у. с частными производными и систем Д. у. с частными производными является то, что для однозначного определения частного решения здесь требуется задание не значений того или иного конечного числа параметров, а некоторых функций. Например, общим решением уравнения

 

является выражение

  u (t, x) = f (x + t) + g (x - t),

где f и g — произвольные функции. Т. о., Д. у. (16) лишь в той мере ограничивает произвол в выборе функции двух переменных u (х, у), что её удаётся выразить через две функции f (z) и g (v) от одного переменного, которые остаются [если в дополнение к уравнению (16) не дано каких-либо «начальных» или «краевых» условий] произвольными.

  Типичной задачей с начальными условиями для системы Д. у. с частными производными 1-го порядка

 

где независимыми переменными являются t, x1,..., xn, а u1,..., um суть функция от этих независимых переменных, может служить задача Коши: по заданным при каком-либо t = t0 значениям

  ui (t0, x1,..., xn) = ji (x1,..., xn),

  i = 1, 2, ..., m,

найти функции ui (t, x1, ..., xn).

  В теории Д. у. с частными производными порядка выше первого и систем Д. у. с частными производными рассматриваются как задачи типа Коши, так и ряд краевых задач.

  При постановке и решении краевых задач для Д. у. с частными производными порядка выше первого существенное значение имеет тип уравнения. В качестве примера можно привести классификацию Д. у. с частными производными 2-го порядка с одной неизвестной функцией z (х, у) от двух переменных:

  F (x, у, z, р, q, r, s, t) = 0,          (18)

где

 

Если

 

то (18) есть эллиптическое уравнение. Примером может служить уравнение Лапласа:

 

Если D < 0, то (18) есть гиперболическое уравнение. Примером может служить уравнение колебания струны:

 

Если D = 0, то (18) есть параболическое уравнение. Примером может служить уравнение распространения тепла:

 

О краевых задачах для этих различных типов уравнений см. Уравнения математической физики.

  Лит.: Обыкновенные Д. у. Степанов В. В., Курс дифференциальных уравнений, 8 изд., М., 1959; Петровский И. Г., Лекции по теории обыкновенных дифференциальных уравнений, 5 изд., М., 1964; Понтрягин Л. С., Обыкновенные дифференциальные уравнения, 2 изд., М., 1965; Камке Э., Справочник по обыкновенным дифференциальным уравнениям, пер. с нем., 3 изд., М., 1965; Филиппов А. Ф., Сборник задач по дифференциальным уравнениям, 2 изд., М., 1965.

  Д. у. с частными производными. Петровский И. Г., Лекции об уравнениях с частными производными, 3 изд., М., 1961; Тихонов А. Н., Самарский А. А., Уравнения математической физики, 3 изд., М., 1966; Соболев С. Л., Уравнения математической физики, 4 изд., М., 1966; Смирнов М. М., Задачи по уравнениям математической физики, 5 изд., М., 1968.

  По материалам одноимённой статьи из 2-го издания БСЭ.

Рис. 8 к ст. Дифференциальные уравнения.

Рис. 1 к ст. Дифференциальные уравнения.

Рис. 3 к ст. Дифференциальные уравнения.

Рис. 6 к ст. Дифференциальные уравнения.

Рис. 2 к ст. Дифференциальные уравнения.

Рис. 4 к ст. Дифференциальные уравнения.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*