KnigaRead.com/
KnigaRead.com » Справочная литература » Энциклопедии » БСЭ БСЭ - Большая Советская Энциклопедия (АЛ)

БСЭ БСЭ - Большая Советская Энциклопедия (АЛ)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн БСЭ БСЭ, "Большая Советская Энциклопедия (АЛ)" бесплатно, без регистрации.
Перейти на страницу:

Примечания. 1 Во всех сплавах в качестве примесей присутствуют Fe и Si; в ряд сплавов вводятся малые добавки Сг, Zr, Ti, Be. 2 Полуфабрикаты: Л — лист; Пф — профиль; Пр — пруток; Пк — поковка; Ш — штамповка; Пв — проволока: Т — трубы; Пл — плиты; Пн — панели: Пс — полосы; Ф — фольга. 3 Свойства получены по полуфабрикатам, показанным без скобок. 4 С добавкой 1,8—1,3% Ni и 0,8—1,3% Fe. 5 С добавкой 1,2—1,4% Li. 6 С добавкой1,9—2,3% Li. 7 С добавкой 0,2—0,4%Fe.

  Двойные сплавы на основе системы Al—Mg (т. н. магналии) не упрочняются термической обработкой. Они имеют высокую коррозионную стойкость, хорошо свариваются; их широко используют при производстве морских и речных судов, ракет, гидросамолётов, сварных ёмкостей, трубопроводов, цистерн, ж.-д. вагонов, мостов, холодильников и т. д.

  Сплавы Al—Mg—Si (т. н. авиали) сочетают хорошую коррозионную стойкость со сравнительно большим эффектом старения; анодная обработка позволяет получать красивые декоративные окраски этих сплавов.

  Тройные Al—Zn—Mg сплавы имеют высокую прочность, хорошо свариваются, но при значительной концентрации Zn и Mg склонны к самопроизвольному коррозионному растрескиванию. Надёжны сплавы средней прочности и концентрации.

  Четверные сплавы Al—Mg—Si—Cu сильно упрочняются в результате старения, но имеют пониженную (из-за Cu) коррозионную стойкость; из них изготовляют силовые узлы (детали), выдерживающие большие нагрузки. Четверные сплавы Al—Zn—Mg—Cu обладают самой высокой прочностью (до 750 Мн/м2 или до 75 кгс/мм2 ) и удовлетворительно сопротивляются коррозионному растрескиванию; они значительно более чувствительны к концентрации напряжений и повторным нагрузкам, чем дуралюмины (сплавы Al—Cu—Mg), разупрочняются при нагреве свыше 100°С. Наиболее прочные из них охрупчиваются при температурах жидкого кислорода и водорода. Эти сплавы широко используют в самолётных и ракетных конструкциях. Сплавы Al—Cu—Mn имеют среднюю прочность, но хорошо выдерживают воздействие высоких и низких температур, вплоть до температуры жидкого водорода. Сплавы Al—Cu—Li по прочности близки сплавам Al—Zn—Mg—Cu, но имеют меньшую плотность и больший модуль упругости; жаропрочны. Сплавы Al—Li—Mg при той же прочности, что и дуралюмины, имеют пониженную (на 11%) плотность и больший модуль упругости. Открытие и разработка сплавов Al—Li—Mg осуществлены в СССР. Сплавы Al—Be—Mg имеют высокую ударную прочность, очень высокий модуль упругости, свариваются, обладают хорошей коррозионной стойкостью, но их применение в конструкциях связано с рядом ограничений.

  В состав деформируемых А. с. входят т. н. спечённые (вместо слитка для дальнейшей деформации используют брикет, спечённый из порошков) А. с. (в 1967 в США объём производства составил около 0,5% ). Имеются 2 группы спечённых А. с. промышленного значения: САП (спечённая алюминиевая пудра) и САС-1 (спечённый алюминиевый сплав).

  САП упрочняется дисперсными частицами окиси алюминия, нерастворимой в алюминии. На частицах чрезвычайно дисперсной алюминиевой пудры в процессе помола её в шаровых мельницах в атмосфере азота с регулируемым содержанием кислорода образуется тончайшая плёнка окислов Al. Помол осуществляется с добавкой стеарина, по мере его улетучивания наряду с дроблением первичных порошков происходит их сращивание в более крупные конгломераты, в результате чего образуется не воспламеняющаяся на воздухе т. н. тяжёлая пудра с плотностью св. 1000 кг/м2 . Пудру брикетируют (в холодном и горячем виде), спекают и подвергают дальнейшей деформации — прессованию, прокатке, ковке. Прочность САП возрастает при увеличении содержания первичной окиси алюминия (возникшей на первичных порошках) до 20—22%, при большем содержании снижается. Различают (по содержанию Al2 O3 ) 4 марки САП (6—9% — САП1; 9,1—13% — САП2; 13,1—18% — САП3; 18,1—20% — САП4). Длительные выдержки САП ниже температуры плавления мало влияют на его прочность. Выше 200—250 °С, особенно при больших выдержках, САП превосходит все А. с., например при 500°С предел прочности sb =50—80 Мн /м2 (5—8 кгс/мм2 ). В виде листов, профилей, поковок, штамповок САП применяется в изделиях, где нужна высокая жаропрочность и коррозионная стойкость. САП содержит большое количество влаги, адсорбированной и прочно удерживаемой окисленной поверхностью порошков и холоднопрессованных брикетов. Для удаления влаги применяется нагрев в вакууме или нейтральной среде несколько ниже температуры плавления алюминиевых порошков или холоднопрессованных брикетов. Дегазация САП повышает его пластичность, и он удовлетворительно сваривается аргоно-дуговой сваркой.

  САС-1, содержащий 25% Si и 5% Ni (или Fe), получают распылением жидкого сплава, брикетированием пульверизата, прессованием и ковкой прутков. Мельчайшие кристаллики Si и FeAl3 (NiAl3 ), воздействуя на матрицу, упрочняют сплав, повышают модуль упругости и пластичность, снижают коэффициент линейного расширения; этот эффект тем больше, чем мельче твёрдые частицы и меньше просвет между ними. Этот А. с. характеризуется низким коэффициентом линейного расширения и повышается модулем упругости. По этим характеристикам порошковые сплавы заметно превосходят соответствующие литейные А. с.

  Литейные А. с. по объёму производства составляют около 20% (США, 1967). Для них особенно важны литейные характеристики — высокая жидкотекучесть, малая склонность к образованию усадочных и газовых пустот, трещин, раковин. А. А. Бочвар установил, что эти свойства улучшаются при сравнительно высоком содержании в сплаве легирующих элементов, образующих эвтектику , что приводит, однако, к некоторому повышению хрупкости сплавов. Важнейшие литейные А. с. содержат свыше 4,5% Si (т. н. силумины). Введение гомеопатических (сотые доли процента) доз Na позволяет модифицировать структуру доэвтектических и эвтектических силуминов: вместо грубых хрупких кристаллов Si появляются кристаллы сфероидальной формы и пластичность сплава существенно возрастает. Силумины (табл. 3 ) охватывают двойные сплавы системы Al—Si (АЛ2) и сплавы на основе более сложных систем: Al—Si—Mg (АЛ9), Al—Si—Си (АЛЗ, АЛ6); Al—Si—Mg—Си (АЛ5, АЛ10). Сплавы этой группы характеризуются хорошими литейными свойствами, сравнительно высокой коррозионной стойкостью, высокой плотностью (герметичностью), средней прочностью и применяются для сложных отливок. Для борьбы с газовой пористостью силуминов Бочвар и А. Г. Спасский разработали оригинальный и эффективный способ кристаллизации отливок под давлением.

  К сплавам с высоким содержанием Mg (свыше 5% ) относятся двойные Al—Mg (АЛ8), сплавы системы Al—Mg—Si с добавкой Mn (АЛ13 и АЛ28), Be и Ti (АЛ22). Сплавы этой группы коррозионностойки, высокопрочны и обладают пониженной плотностью. Наиболее высокопрочен сплав АЛ8, но технология его изготовления сложна. Для уменьшения окисляемости в жидком состоянии в него вводится 0,05 — 0,07% Be, а для измельчения зерна — такое же количество Ti, в формовочную смесь для подавления реакции металла с влагой добавляется борная кислота. Сплав АЛ8 отливается главным образом в земляные формы. Сплавы АЛ13 и АЛ28 имеют лучшие литейные свойства, но меньшую прочность и не способны упрочняться термической обработкой; они отливаются в кокиль под давлением и в землю. Длительные низкотемпературные нагревы могут привести к ухудшению коррозионной стойкости литейных А. с. с высоким содержанием Mg.

Табл. 3.—Химический состав и механические свойства некоторых литейных алюминиевых сплавов (1Мн/м2 » 0, 1 кгс /мм2 ; 1 кгс/мм2 » 10 Мн/м2 )

Марка сплава Элементы (% по массе) Вид литья1 Типичные механические свойства Cu Mg Mn Si предел прочности sb , Мн/м2 предел текучести s0,2 , MH/M2 относит. удлинение d, % АЛ8 9,5-11,5 0,1 0,3 З, В, О 320 170 11,0 АЛ2 0,8 — 0,5 10-13 Все виды литья 200 110 3,0 АЛ9 0,2 0,2-0,4 0,5 6-8 » » » 230 130 7,0 АЛ4 0,3 0,17-0,3 0,25-0,5 8-10,5 » » » 260 200 4,0 АЛ5 1,0-1,5 0,35-0,6 0,5 4,5-5,5 » » » 240 180 1,0 АЛЗ 1,5-3,5 0,2-0,8 0,2-0,8 4,0-6,0 Все виды литья, кроме Д 230 170 1,0 АЛ25 1,5-3,0 0,8-1,2 0,3-0,6 11-13 К 200 180 0,5 АЛ30 0,8-1,5 0,8-1,3 0,2 11-13 К 200 180 0,7 АЛ7 4-5 0,03 — 1,2 — 230 150 5,0 АЛ1 3,75-4,5 1.25-1,75 — 0,7 Все виды литья, кроме Д 260 220 0,5 АЛ19 4,5-5,3 20,05 0,6-1,0 0,3 З, О, В 370 260 5,0 АЛ242 0,2 1,5-2,0 0,2-0,5 0,3 З, О, В 290 — 3,0

Примечание. 1 Виды литья: З — в землю; В — по выплавляемым моделям; О — в оболочковые формы; К —в кокиль; Д — под давлением. 2 Zn 3,5 — 4,5%.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*