БСЭ БСЭ - Большая Советская Энциклопедия (МО)
Действия со знаками всегда в той или иной мере связаны с пониманием знаковых образований и их преобразований: формулы, математические уравнения и т. п. выражения применяемого при построении модели научного языка определенным образом интерпретируются (истолковываются) в понятиях той предметной области, к которой относится оригинал (см. Интерпретация ). Поэтому реальное построение знаковых моделей или их фрагментов может заменяться мысленно-наглядным представлением знаков и (или) операций над ними. Эту разновидность знакового М. иногда называется мысленным М. Впрочем, этот термин часто применяют для обозначения «интуитивного» М., не использующего никаких чётко фиксированных знаковых систем, а протекающего на уровне «модельных представлений». Такое М. есть непременное условие любого познавательного процесса на его начальной стадии.
По характеру той стороны объекта, которая подвергается М., уместно различать М. структуры объекта и М. его поведения (функционирования протекающих в нем процессов и т. п.). Это различение сугубо относительно для химии или физики, но оно приобретает чёткий смысл в науках о жизни, где различение структуры и функции систем живого принадлежит к числу фундаментальных методологических принципов исследования, и в кибернетике, делающей акцент на М. функционирования изучаемых систем. При «кибернетическом» М. обычно абстрагируются от структуры системы, рассматривая её как «чёрный ящик», описание (модель) которого строится в терминах соотношения между состояниями его «входов» и «выходов» («входы» соответствуют внешним воздействиям на изучаемую систему, «выходы» — её реакциям на них, т. е. поведению).
Для ряда сложных явлений (например, турбулентности, пульсаций в областях отрыва потока и т. п.) пользуются стохастическим М., основанным на установлении вероятностей тех или иных событий. Такие модели не отражают весь ход отдельных процессов в данном явлении, носящих случайный характер, а определяют некоторый средний, суммарный результат.
Понятие М. является гносеологической категорией, характеризующей один из важных путей познания. Возможность М., т. е. переноса результатов, полученных в ходе построения и исследования моделей, на оригинал, основана на том, что модель в определённом смысле отображает (воспроизводит, моделирует) какие-либо его черты; при этом такое отображение (и связанная с ним идея подобия) основано, явно или неявно, на точных понятиях изоморфизма или гомоморфизма (или их обобщениях) между изучаемым объектом и некоторым другим объектом «оригиналом» и часто осуществляется путём предварительного исследования (теоретического или экспериментального) того и другого. Поэтому для успешного М. полезно наличие уже сложившихся теорий исследуемых явлений, или хотя бы удовлетворительно обоснованных теорий и гипотез, указывающих предельно допустимые при построении моделей упрощения. Результативность М. значительно возрастает, если при построении модели и переносе результатов с модели на оригинал можно воспользоваться некоторой теорией, уточняющей связанную с используемой процедурой М. идею подобия. Для явлений одной и той же физической природы такая теория, основанная на использовании понятия размерности физических величин, хорошо разработана (см. Моделирование физическое , Подобия теория ). Но для М. сложных систем и процессов, изучаемых, например, в кибернетике, аналогичная теория ещё не разработана, чем и обусловлено интенсивное развитие теории больших систем — общей теории построения моделей сложных динамических систем живой природы, техники и социально-экономической сферы.
М. всегда используется вместе с др. общенаучными и специальными методами. Прежде всего М. тесно связано с экспериментом . Изучение какого-либо явления на его модели (при предметном, знаковом М., М. на ЭВМ) можно рассматривать как особый вид эксперимента: «модельный эксперимент», отличающийся от обычного («прямого») эксперимента тем, что в процесс познания включается «промежуточное звено» — модель, являющаяся одновременно и средством, и объектом экспериментального исследования, заменяющим изучаемый объект. Модельный эксперимент позволяет изучать такие объекты, прямой эксперимент над которыми затруднён, экономически невыгоден, либо вообще невозможен в силу тех или иных причин [М. уникальных (например, гидротехнических) сооружений, сложных промышленных комплексов, экономических систем, социальных явлений, процессов, происходящих в космосе, конфликтов и боевых действий и др.].
Исследование знаковых (в частности, математических) моделей также можно рассматривать как некоторые эксперименты («эксперименты на бумаге», умственные эксперименты). Это становится особенно очевидным в свете возможности их реализации средствами электронной вычислительной техники. Один из видов модельного эксперимента — модельно-кибернетический эксперимент, в ходе которого вместо «реального» экспериментального оперирования с изучаемым объектом находят алгоритм (программу) его функционирования, который и оказывается своеобразной моделью поведения объекта. Вводя этот алгоритм в цифровую ЭВМ и, как говорят, «проигрывая» его, получают информацию о поведении оригинала в определенной среде, о его функциональных связях с меняющейся «средой обитания».
Т. о., можно прежде всего различать «материальное» (предметное) и «идеальное» М.; первое можно трактовать как «экспериментальное», второе — как «теоретическое» М., хотя такое противопоставление, конечно, весьма условно не только в силу взаимосвязи и обоюдного влияния этих видов М., но и наличия таких «гибридных» форм, как «мысленный эксперимент». «Материальное» М. подразделяется, как было сказано выше, на физическое и предметно-математическое М., а частным случаем последнего является аналоговое М. Далее, «идеальное» М. может происходить как на уровне самых общих, быть может даже не до конца осознанных и фиксированных, «модельных представлений», так и на уровне достаточно детализированных знаковых систем; в первом случае говорят о мысленном (интуитивном) М., во втором — о знаковом М. (важнейший и наиболее распространённый вид его — логико-математическое М.). Наконец, М. на ЭВМ (часто именуемое «кибернетическим») является «предметно-математическим по форме, знаковым по содержанию».
М. необходимо предполагает использование абстрагирования и идеализации . Отображая существенные (с точки зрения цели исследования) свойства оригинала и отвлекаясь от несущественного, модель выступает как специфическая форма реализации абстракции , т. е. как некоторый абстрактный идеализированный объект. При этом от характера и уровней лежащих в основе М. абстракций и идеализаций в большой степени зависит весь процесс переноса знаний с модели на оригинал; в частности, существенное значение имеет выделение трёх уровней абстракции, на которых может осуществляться М.: уровня потенциальной осуществимости (когда упомянутый перенос предполагает отвлечение от ограниченности познавательно-практической деятельности человека в пространстве и времени, см. Абстракции принцип ), уровня «реальной» осуществимости (когда этот перенос рассматривается как реально осуществимый процесс, хотя, быть может, лишь в некоторый будущий период человеческой практики) и уровня практической целесообразности (когда этот перенос не только осуществим, но и желателен для достижения некоторых конкретных познавательных или практических задач).
На всех этих уровнях, однако, приходится считаться с тем, что М. данного оригинала может ни на каком своём этапе не дать полного знания о нём. Эта черта М. особенно существенна в том случае, когда предметом М. являются сложные системы, поведение которых зависит от значительного числа взаимосвязанных факторов различной природы. В ходе познания такие системы отображаются в различных моделях, более или менее оправданных; при этом одни из моделей могут быть родственными друг другу, другие же могут оказаться глубоко различными. Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки точно определяемых критериев сравнения. Если такие критерии основываются на экспериментальных данных, то возникает дополнительная трудность, связанная с тем, что хорошее совпадение заключений, которые следуют из модели, с данными наблюдения и эксперимента ещё не служит однозначным подтверждением верности модели, т. к. возможно построение других моделей данного явления, которые также будут подтверждаться эмпирическими фактами. Отсюда — естественность ситуации, когда создаются взаимодополняющие или даже противоречащие друг другу модели явления; противоречия могут «сниматься» в ходе развития науки (и затем появляться при М. на более глубоком уровне). Например, на определенном этапе развития теоретической физики при М. физических процессов на «классическом» уровне использовались модели, подразумевающие несовместимость корпускулярных и волновых представлений; эта «несовместимость» была «снята» созданием квантовой механики, в основе которой лежит тезис о корпускулярно-волновом дуализме, заложенном в самой природе материи.