KnigaRead.com/
KnigaRead.com » Религия и духовность » Самосовершенствование » Михаил Заречный - Квантово-мистическая картина мира. Структура реальности и путь человека

Михаил Заречный - Квантово-мистическая картина мира. Структура реальности и путь человека

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Михаил Заречный, "Квантово-мистическая картина мира. Структура реальности и путь человека" бесплатно, без регистрации.
Перейти на страницу:

Если же событие может произойти несколькими взаимоисключающими с классической точки зрения способами, то амплитуда вероятности события — это сумма амплитуд вероятности каждого отдельного канала, а вероятность события определяется формулой P = |(a|1> + b|2>)|2. Возникает интерференция, то есть взаимное влияние на результирующую вероятность обеих компонент вектора состояния. В этом случае говорят, что мы имеем дело с суперпозицией состояний.

Отметим, что суперпозиция — это не смесь двух классических состояний (немного одного, немного другого), это нелокальное состояние, в котором электрона, как локального элемента классической реальности, нет. Лишь в ходе декогеренции[11], вызванной взаимодействием с окружением (в нашем случае — экраном), электрон возникает в виде локального классического объекта.

Теперь — короткий экскурс в историю подобных опытов. Впервые интерференцию света на двух щелях наблюдал английский ученый Томас Юнг в начале XIX века. Затем, в 1926–1927 годах К. Д. Дэвиссоном и Л. X. Джермером в экспериментах с использованием монокристалла никеля была открыта дифракция электронов — явление, когда при прохождении электронами через множество «щелей», образованных плоскостями кристалла, наблюдаются периодические пики в их интенсивности. Природа этих пиков совершенно аналогична природе пиков в двухщелевом эксперименте, а их пространственное расположение и интенсивность позволяют получить точные данные о структуре кристалла. Этим ученым, а также Д. П. Томсону, который независимо от них также открыл дифракцию электронов, в 1937 году была присуждена Нобелевская премия.

Затем подобные опыты многократно повторялись, в том числе и с летящими «поштучно» электронами, а также с нейтронами и атомами, и во всех них наблюдалась предсказываемая квантовой механикой интерференционная картина. Впоследствии были проведены эксперименты с более крупными частицами. Один из таких опытов (с молекулами тетрафенилпорфирина) был проведен в 2003 году группой ученых из Венского университета во главе с Антоном Цайлингером[12]. В этом классическом двухщелевом эксперименте было четко продемонстрировано наличие интерференционной картины от одновременного прохождения очень большой по квантовым меркам молекулы через две щели.

Наиболее впечатляющий на сегодняшний день эксперимент был недавно проведен той же группой исследователей[13]. В этом исследовании пучок фуллеренов (молекул C70, содержащих 70 атомов углерода) рассеивался на дифракционной решетке, состоящей из большого числа узких щелей. При этом имелась возможность вести контролируемый нагрев летящих в пучке молекул C70 посредством лазерного луча, что позволяло менять их внутреннюю температуру (иначе говоря, среднюю энергию колебаний атомов углерода внутри этих молекул).

Теперь вспомним, что любое нагретое тело, в том числе молекула фуллерена, испускает тепловые фотоны, спектр которых отражает среднюю энергию переходов между возможными состояниями системы. По нескольким таким фотонам можно, в принципе, с точностью до длины волны испускаемого кванта определить траекторию испустившей их молекулы. Отметим, что чем выше температура и, соответственно, меньше длина волны кванта, тем с большей точностью мы могли бы определить положение молекулы в пространстве, а при некоторой критической температуре точность окажется достаточна для определения, на какой конкретно щели произошло рассеяние.

Соответственно, если бы кто-то окружил установку Цайлингера совершенными детекторами фотонов, то он, в принципе, мог бы установить, на какой из щелей дифракционной решетки рассеялся фуллерен. Другими словами, испускание молекулой квантов света дало бы экспериментатору ту информацию для разделения компонент суперпозиции, которую нам давал пролетный детектор. Однако никаких детекторов вокруг установки не было. Как и предсказывала теория декогеренции[14], их роль сыграла окружающая среда.

В эксперименте было обнаружено, что в отсутствии лазерного нагрева наблюдается интерференционная картина, совершенно аналогичная картине от двух щелей в опыте с электронами. Включение лазерного нагрева приводит сначала к ослаблению интерференционного контраста, а затем, по мере роста мощности нагрева, к полному исчезновению эффектов интерференции. Было получено, что при температурах T < 1000K молекулы ведут себя как квантовые частицы, а при T > 3000K, когда траектории фуллеренов «фиксируются» окружающей средой с необходимой точностью — как классические тела.

Таким образом, роль детектора, способного выделять компоненты суперпозиции, оказалась способна выполнять окружающая среда. В ней при взаимодействии с тепловыми фотонами в той или иной форме и записывалась информация о траектории и состоянии молекулы фуллерена. Никакого специального устройства не надо! Совершенно не важно, через что идет обмен информацией: через специально поставленный детектор, окружающую среду или человека. Для разрушения когерентности состояний и исчезновения интерференционной картины имеет значение только принципиальное наличие информации, через какую из щелей прошла частица, а кто ее получит, не важно. Иначе говоря, фиксация или «проявление» суперпозиционных состояний вызывается обменом информацией между подсистемой (в данном случае — частицей фуллерена) и окружением.

Возможность контролируемого нагрева молекул позволила в данном эксперименте изучить переход от квантового к классическому режиму во всех промежуточных стадиях. Оказалось, что расчеты, выполненные в рамках теории декогеренции (о ней пойдет речь ниже), полностью согласуются с экспериментальными данными.

Иначе говоря, в эксперименте подтверждены выводы теории декогеренции о том, что в основе наблюдаемой реальности лежит нелокализованная и «невидимая» квантовая реальность, которая становится локализованной и «видимой» в ходе происходящего при взаимодействии обмена информацией и сопутствующей этому процессу фиксацией состояний.

На рис. 4 приведена схема установки Цайлингера, без всяких комментариев. Полюбуйтесь на неё, просто так.


Рис. 4

Глава 2. Чудо квантовых корреляций

Если вы пошли в магазин за арбузом, то одновременно вы не можете находиться в кругосветном путешествии или на заседании ученого совета. Если арбуз оказался весом 8 кг, то ни у вас, ни у продавца не возникает сомнений в том, что как до взвешивания, так и после него его вес был именно 8 кг, а не 15 кг. Но Богом сотворенный мир гораздо богаче этого нашего житейского опыта…

А. Белинский[15]

Где-то в глубине нас сидит потребность сводить все явления окружающего мира к простым и уже известным нам образам и соотношениям. И если мы сталкиваемся с чем-то радикально новым, это нередко вызывает раздражение и скептицизм, а иногда и агрессию. Что заставляет нас наматывать круги по привычным житейским траекториям, когда каждому открыта дверь неповторимости, глубины и яркости любого мгновения?

Попробуем представить, что скажет по этому поводу психолог, философ и мистик.

Психолог отметит, что с этим явлением, именуемым сопротивлением, он сталкивается при работе практически с каждым клиентом. Сопротивление — это переживание внутренней преграды, возникающее у людей по отношению к возможным изменениям в поведении или при осознании некоторых переживаний. Иначе говоря, это переживание границы, за которую человек боится ступить, страшится почувствовать, что там, и обычно избегает даже разговоров на эту тему, находя для этого тысячи причин и оправданий.

Снять или обойти сопротивление в каком-то конкретном случае иногда возможно, только от этого, как от любой манипулятивной технологии, может быть и вред, добавит психолог.

Он также отметит непластичность (ригидность) психики и высокий уровень деструктивного страха тех, у кого новая информация вызвала реакцию неприятия. И подчеркнет возможное отсутствие в их арсенале понятий, способных служить опорой при восприятии: никуда не деться от того, что связь восприятия и поведения с наличием в языке индивида необходимых структур несомненна[16]. В жизни человека нет того, чего он не знает. Если в языке нет слова, обозначающего синий цвет, далеко не каждый носитель этого языка будет способен отличить синий цвет от зеленого.

Далее психолог, вероятно, перейдет к роли Я-образа (некоторого ментального представления о самом себе), посредством которого человек[17] проводит границы между собой и не собой, между возможными и недопустимыми для него мыслями. Эти границы проводятся каждым из нас самым причудливым образом, и мысли, представляющие угрозу для ментального образа себя, будут встречать серьезное сопротивление. А иногда — агрессию, которая может быть направлена не только вовне, но и на себя самого.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*