KnigaRead.com/
KnigaRead.com » Религия и духовность » Самосовершенствование » Нурали Латыпов - Прокачай мозг методом знатоков «Что? Где? Когда?»

Нурали Латыпов - Прокачай мозг методом знатоков «Что? Где? Когда?»

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Нурали Латыпов, "Прокачай мозг методом знатоков «Что? Где? Когда?»" бесплатно, без регистрации.
Перейти на страницу:

В. Ковалёв. Во-первых, я никак не могу взять в толк, как можно попасть в то, что не имеет размеров, то есть в точку. Во-вторых, точность – это идеализация, химера нашего ума, а в реальном мире ничто не может абсолютно точно совпасть друг с другом, ничто не может абсолютно заменить другое. В-третьих, не надо путать математику с логикой, а логику формальную (математическую) с диалектической, то есть рассудок с разумом. Математика – предел формализации как таковой, то есть рассудок чистейшей воды, который умеет только разделять, фиксировать и связывать внешней связью эти выделенные им неподвижности. Созданная математикой абстракция точки, то есть дискретности как таковой, у которой единственное свойство – отсутствие свойств, – ярчайший пример голого рассудка. Плоскость же по отношению к точке есть её прямая противоположность, то есть континуум, непрерывность как таковая. Математика – это только фиксация их различия и ничего более. А в чём состоит их тождество, она не знает, это уже вопрос философии, которая на что-нибудь да может-таки сгодиться. Наше сознание в любом процессе познания то проваливается в голую математику, то поднимется на уровень философии, и только так, пульсируя, оно может получить действительное знание.

А. Трушечкин[35]. Общепринятый ответ на этот парадокс – что «невероятное» не означает «невозможное». Невероятное событие – вероятность которого равна нулю, невозможное – которое не может произойти. На это можно возразить: «Как же? Согласно исходным идеям теории вероятностей, если вероятность равна нулю, то событие и есть невозможное!»

Тогда тут, пожалуй, можно разобрать подробнее, как мы делаем вывод о том, что вероятность попадания в точку равно нулю. Здесь речь идёт о геометрической вероятности. Предположим для простоты, что мишень ограниченна: например, это круг единичной площади, и мы стреляем по нему безразмерными пулями. Тогда вероятность попадания в произвольную область этого круга равна площади этой области. Площадь точки равна нулю. Почему? Ответ: по определению (из теории меры) множество имеет площадь ноль, если его можно накрыть множеством сколь угодно малой площади. Для точки можно это сделать. Например, рассмотреть последовательность маленьких кружков с центрами в этой точке и радиусами, стремящимися к нулю. Вероятность попадания в кружок с уменьшением его радиуса уменьшается, но не ноль. То есть множество нулевой площади определяется не непосредственно, а как бы итеративно, путём приближения множествами уменьшающейся площади. Поэтому и утверждение о том, что вероятность попадания в точку равна нулю, можно воспринимать так же: здесь не чистый ноль, а бесконечно малая последовательность чисел. Попасть в точку можно, но вероятность исчезающе мала.

Таким образом, в этих рассуждениях всплывает на поверхность то, что точка – это идеализация очень маленького множества (конец обсуждения)

Так что, любезный наш читатель, зря старался А. Н. Колмогоров?

ВОПРОС № 14

Парадокс неожиданности. Однажды в воскресенье начальник тюрьмы вызвал преступника, приговорённого к казни, и сообщил ему: «Вас казнят на следующей неделе в полдень. День казни станет для вас сюрпризом, вы узнаете о нём только когда палач в полдень войдёт к вам в камеру». Начальник тюрьмы был честнейшим человеком и никогда не врал. Заключённый подумал над его словами и улыбнулся: «Вы не сможете казнить меня, если хотите выполнить свои обещания!»

Тем не менее, начальник тюрьмы выполнил свои обещания, и узник был казнён неожиданно для него, как и было обещано! Как это возможно?

Парадоксы теории множеств

«Никто не может изгнать нас из рая, созданного нам Кантором!» – заявил Давид Гильберт по поводу теории множеств Георга Кантора. Таково было чувство восторга от новой «игрушки» у математиков того времени. В 1873 году Кантор ввел понятие множества. Первоначально новая теория помогла решить ряд проблем. Однако очень скоро в ней обнаружились противоречия.

Первое противоречие возникло благодаря введению и анализу самого большого множества из всех: множества всех множеств. Простейший вопрос «Существует ли множество всех множеств?» тут же приводит к парадоксу. Для этого надо напомнить, что в теории множеств разрешима процедура включения одного множества в состав другого или «взятие множества от множества». (Это вам ничего не напоминает? Правильно – вездесущую рекурсию!)

Можно включать какие угодно множества в состав одного – их объединяющего, до тех пор пока все множества не исчерпаются. Тогда мы получим сверхмножество, которое включает в себя все остальные множества. Все! Но… не все! Само сверхмножество (множество всех множеств) оказалось не включённым! Ведь его вначале не было, а теперь оно появилось. Ну что же, включим теперь и его. Но тогда появляется новое сверхмножество, которого только что ещё не было. Тогда и его включим, и так до бесконечности! То есть множество всех множеств и существует, и не существует одновременно!

Причиной парадокса является возможность быть множеству элементом самого себя. Можно конечно ограничить эту возможность, но тогда исчезнут многие очень полезные возможности теории множеств. Лучше локализовать проблему, и для этого разделить все множества на два типа, те, которые содержат себя в качестве своего элемента, и те, которые не содержат…


В 1901 году Бертран Рассел в письме коллеге изложил мысль, которая в популярной форме известна как «Парадокс брадобрея»: «В одной военной части был брадобрей. Ему было разрешено под угрозой смертной казни брить только тех военнослужащих, которые не бреются сами. Но вот беда – сам брадобрей тоже был на службе. Мог ли он в таком случае побриться сам?»

Если он себя побреет, то окажется тем, кого ему брить категорически запрещено, а если не побреет, то окажется среди тех, кого брить ему можно!

Словом, в теории множеств выявилось много противоречий[36], а на их устранение потратили огромное количество усилий. Собственно, как и в случае с математическим анализом, который первоначально был противоречив и только трудами титанов – Коши, Вейерштрасс, Гейне – приведён в образцовое состояние. В условно образцовое… Ибо все противоречия математического анализа были упрятаны в его определения, совмещающие в себе невозможное. Достаточно вспомнить бесконечно малые и бесконечно большие величины, которые «куда-то стремятся, но никогда своего предела не достигают». При этом само стремление к пределу происходит вне времени, что невозможно само по себе – в природе такое не наблюдается.

ВОПРОС № 15

Сколько яблок на рисунке?[37]


Детский парадокс

В математике имеется огромное число парадоксов и противоречий. Никто даже не знает сколько – так велика математика! Кстати, это обстоятельство ничуть не мешает нам её любить!

Тем нашим читателям, у кого подрастают дети, ещё предстоит хлебнуть из-за этой «парадоксальности»:

– Папа, существует ли самое большое число?

– Да, существует? – папа пытается отделаться от навязчивого почемучки.

– А что будет, если к нему прибавить единицу?

Очевидно, что ответ неудовлетворителен. Отец в затруднении.

– Нет, Не существует. Так как натуральный ряд стремится к бесконечности! – папа пытается продемонстрировать образованность.

– А можно это несуществующее число, ну, эту бесконечность, обозначить?

– Да, можно.

– А если отнять от этого не существующего числа единицу, мы получим существующее число?

– Нет!

– А если отнять от этого не существующего числа две единицы, мы получим существующее число?

– Нет!

‹…›

– А если отнять от этого не существующего числа бесконечность натуральных чисел, мы получим существующее число? Ведь это бесконечности одинакового порядка!

– Э… Да! Получим.

– Тогда где, на каком числе несуществующее число превращается в существующее?

Парадоксы триалектики

Нередко противники диалектики утверждают, что парадоксы и противоречия возникают как следствие «бинарности», парности её категорий. Это, конечно, и верно, и неверно одновременно. Вот парадокс для трёх понятий.

Парадокс причинности

Будущее, настоящее, прошедшее. Три «стадии», или же измерения, времени. Если существует возможность передать сигнал из будущего в прошлое, то возникает петля времени.

Допустим, мы из некоторой лаборатории передаём сигнал на взрывное устройство, находящееся в прошлом, которое уничтожает наш передатчик. Но тогда мы не можем послать сигнал для уничтожения передатчика, и передатчик передаёт сигнал, который взрывает передатчик, который не передаёт сигнал… и т. д.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*