Павел Флоренский - Павел Флоренский История и философия искусства
Евклидовско–кантовское пространство характеризуется прежде всего нижеследующими признаками:
оно бесконечно;
оно беспредельно;
оно однородно;
оно изотропно;
оно связно;
оно однозначно;
оно трехмерно;
оно имеет постоянную кривизну, равную нулю.
Сюда можно было бы присоединить и еще некоторые признаки, наличием которых дается право считать пространство удовлетворяющим евклидо–кантовской схеме; но остановимся пока лишь на перечисленных и бегло просмотрим их ряд, с тем чтобы сопоставить далее эти признаки с таковыми же пространства или, точнее, пространств наглядного созерцания в опыте.
1[182]. Пространство бесконечно. Это значит, геометрические количества каждого рода, характеризующие геометрические образы, всегда могут быть доводимы до значений, превосходящих всякую данную величину, или, точнее сказать, всякую мысленно взятую величину. Каким бы числом мы ни охарактеризовали объем, площадь или длину, всегда может быть указан в пространстве геометрический образ, объем которого, площадь поверхности и длина прямолинейных отрезков, в нем заключенных, превосходит в своем численном выражении вышеуказанные. Известным постулатом Архимеда утверждается, что всякая длина прямолинейного отрезка может быть превзойдена, если взять некоторое, достаточно большое, но всегда конечное число раз некоторый отрезок, как бы он ни был короток. В данном случае постулат Архимеда берется навыворот: как бы велик ни был некоторый отрезок и какое бы большое число раз он ни был повторен, всегда может быть взят отрезок более длинный, нежели полученный вышеуказанным приемом сложения. И то же самое должно быть повторено о площадях и объемах. — Можно пояснить ту же мысль еще иначе: взяв любую единицу длины, площади или объема, можно приставить к ней какой угодно большой коэффициент, и суждение о геометрической возможности соответственного образа всегда будет справедливым.
2. Пространство беспредельно. От утверждения бесконечности пространства должно быть отличаемо утверждение его беспредельности. Под беспредельностью разумеется свойство пространства никогда не задерживать поступательного движения по прямой, и притом — произвольно взятой прямой, так что со стороны пространства предела движению, в смысле необходимости остановки, оказано никогда не может быть. Поступательное движение, если оно вынуждено прекратиться, терпит это от действия сил или от материальных препятствий, но никак не от пространства. Ясное дело, беспредельность пространства не предполагает непременно бесконечности его, как и, наоборот, бесконечность не включает в себя непременно беспредельности. Всякое смыкание в себя геометрических образов, если они принимаются за основные, устанавливает и возможность беспредельного движения по ним, хотя образы эти конечны. И наоборот, из возможности брать в пространстве величины, превосходящие всякую данную того же рода, вовсе не следует, что никакое движение не может быть остановлено в силу строения самого пространства. Живя на геоиде и принимая за кратчайшие, т. е. за прямые, или скорее прямейшие, линии его геодезические, мы встречаем в своем движении по геодезическим линиям лишь материальные препятствия, и со стороны чисто геометрической геоид должен считаться двухмерным пространством беспредельным; однако это не мешает быть ему конечным.
3. Пространство однородно. Где бы мы ни вырезали мысленно кусок пространства, все геометрические свойства его будут совершенно тождественными со свойствами куска из другого места. Это можно выразить еще, сказав, что место в отношении свойств и характеристик геометрических образов не имеет никакого значения. Любое геометрическое построение, сколь угодно большое и сколь угодно малое, может быть перемещено в пространстве куда угодно, и никаких последствий этого перемещения внутри самого образа наблюдено не будет. Противоположною этой однородности была бы неоднородность пространства, которую можно мыслить двояко:
либо как постепенное изменение свойств пространства, а следовательно, и образов, в нем содержащихся, в зависимости от места, наподобие воздуха все менее плотного по мере удаления от земли,
либо как зернистость пространства[183], в силу которой свойства больших образов могут быть всюду одинаковыми, но свойства достаточно малых различны в зависимости от зерна или области той или другой природы, в которую данный образ попадет,
либо, наконец, как сочетание того и другого. В первом случае, небольшие сдвиги не изменяли бы существенно пространственных характеристик образов, но большие — вели бы к этому. Во втором случае, и большие, и малые смещения больших образов были бы безразличны, но достаточно малые образы прерывно меняли бы свои характеристики и, при малых сдвигах, внезапно попадали в новые пространственные области. Наконец, третий случай давал бы изменения двоякие. Утверждением однородности пространства исключаются все три случая.
4[184]. Пространство изотропно. Понятие об изотропности сопряжено с понятием об однородности, подобно тому как в проективной геометрии двойственно сопряжены прямая и точка. Тут даже не только подобие обоих отношений, но и связь более существенная: однородность характеризует пространство в каждой его точке, а изотропность — в каждом его направлении. Если мы переходим в пространстве от одной точки к другой, то, вообще говоря, нет никаких оснований ждать полной тождественности имеющихся в них свойств его; а если таковая все‑таки окажется, то данное пространство должно рассматриваться как некоторый весьма специальный случай. Но если бы этот специальный случай и имел место, то остается еще полная возможность встретить разные свойства пространства, в зависимости от направления проведенного в нем прямолинейного луча. Все параллельные между собою прямые дадут одну и ту же характеристику пространства. Новая же система параллелей охарактеризует пространство по–иному. Иначе говоря, пространство, хотя бы и вполне однородное, может быть подобным кристаллической среде, т. е. быть анизотропным. Требуется доказать в каждом данном случае независимость свойств пространства от направления в нем, чтобы иметь право называть данное пространство изотропным. — Как было только что указано, безразличие места в пространстве, т. е. свойства пространства быть однородным, еще ничего не предрешает в вопросе о безразличии направления в нем, т. е. его свойства быть изотропным. Но и наоборот, пространство изотропное может и не быть однородным. Так, пространство с неоднородностями, распределенными вполне беспорядочно, будет вполне изотропно, но однородным не будет.
Таким образом, изотропность и однородность пространства—признаки друг от друга независимые, и совмещение их есть очень специальный случай, который подлежит особому доказательству.
5. Но, кроме изотропности, должно быть особо утверждаемо свойство, которое формально можно было бы подвести под понятие изотропности, но по своему внутреннему смыслу, ради отчетливости, должно рассматриваться как самостоятельное. Это свойство — битлярностъ. В самом деле, у прямой линии, кроме ее направления (direction), должен рассматриваться ее смысл (sens), и требуется всякий раз особое доказательство, что в данном случае тот и другой смысл данного направления безразличны[185]. Если это доказано относительно каждого из направлений пространства, то мы имеем право называть его биполярным, если же безразличие смысла остается под вопросом, или даже отрицается, то такое пространство мы должны считать по тем направлениям, относительно которых безразличие их смысла не доказано, пространством, обладающим свойством униполярности. —Понятие биполярности может быть еще расширено и тогда уже явно отделится от понятия изотропности, если говорить о смысле не направления, т. е. прямой, а о смысле всякого пути между двумя точками. Вообще говоря, прохождение некоторого произвольно выбранного пути между точками А и В от А к 5 — не то же, что от В к А, т. е. в отношении любого пути пространство, если нет особых ограничений, должно считаться униполярным. —Изотропностью характеризуются направления в пространстве, а униполярностью — отрезки этих направлений между двумя точками. Таким образом, для построения понятия об униполярности, необходимы и прямая (шире —вообще линия) и точка, и, следовательно, униполярность имеет связь как с изотропностью, так и с однородностью.
6. Пространство непрерывно и связно. Первоначальное понятие о непрерывности дается указанием на возможность беспредельного деления всякого геометрического образа в пространстве, а о связности — указанием на несуществование в пространстве отдельных, друг от друга уединенных областей, между собою не координированных и не имеющих беспредельного множества путей взаимного сообщения. Однако эти предварительные указания очень недостаточны, и, ограничиваясь ими, мы далеко не выразили бы предносящегося общечеловеческому сознанию понимания непрерывности и связности. — Несравненно более строгая формулировка этого понимания принадлежит Георгу Кантору[186]. Она обнимает оба указанные свойства одним термином Continuum, с тем чтобы расчленить его несколько по–новому. Определение Кантора: «Continuum есть совершенное и связное множество точек». Это тонкое определение, но так как и оно, равно как и последующие усовершенствования его, все‑таки не адекватно интуиции непрерывности и связности, здесь было бы неуместно обсуждать тонкости и контроверзы теории множеств. —В порядке изложения следует отметить лишь, что и непрерывность и связность пространства отнюдь не вытекают аналитически из его понятий и следовательно должны быть доказаны особо. При этом, чем тоньше и глубже проводится логический анализ Continuum'a, тем более частным случаем оказывается пространство евклидовской геометрии. И значит, тем сложнее и потому маловероятнее условия его существования и тем труднее доказательство, что пространство в самом деле таково. Вообще говоря, нет оснований ждать, чтобы пространство имело своими свойствами непрерывность и связность. Из всех возможных случаев непрерывное и связное пространство было бы неожиданной и величайшей редкостью.