Сергей Доронин - Квантовая магия
Сложность в описании тонких уровней реальности и тот долгий путь, который проделала наука, подходя к нему, объясняются тем, что на этих квантовых уровнях относительно высокая мера квантовой запутанности. Попросту говоря, там нет реальности, единой для всех. Сюжет, декорации и «картинки» восприятия могут быть разные — они зависят от сложившейся у человека системы интерпретаций и привычных установок. Но в основе любого сюжета всегда будут лежать объективные энергоинформационные процессы на тонких уровнях реальности. Например, все эти восприятия Тонкого мира могут быть «окрашены» религиозными мотивами, или это будут современные фантастические сюжеты с «инопланетянами» или «неорганами» в главной роли и т. п. При такой ситуации создавалось впечатление, что за этими «картинками» нет объективных элементов реальности, нет физической основы. С одной стороны, это ставило под сомнение мистический опыт, а с другой — сильно затрудняло поиск общих закономерностей. Но все же наука приблизилась к пониманию этих вопросов при изучении фундаментальных процессов в квантовом домене реальности — процессов, связанных с физикой квантовой информации. И основная роль здесь принадлежит количественному описанию несепарабельных состояний. Этот шаг квантовой теории я считаю очень существенным — таким, который имеет все основания стать самым важным и значимым достижением науки за всю ее историю.
3.3. Мера квантовой запутанности
Когда речь заходит о количественном описании квантовой запутанности, на первый план выходит понятие матрицы плотности. Первой была введена мера квантовой запутанности для самого простого случая — двухчастичной системы в чистом состоянии [типа (3.1)], то есть мера запутанности между двухуровневыми подсистемами А и B, когда вся система замкнута (находится в чистом состоянии). Основывается эта мера на понятии частичной матрицы плотности и выражается в терминах энтропии фон Неймана:
E(ρA) = — Tr[ρAlog2(ρA)]. (3.6)
Здесь ρA — частичная (редуцированная) матрица плотности подсистемы А. Получается она взятием частичного следа[80] по B. С физической точки зрения, взятие частичного следа и получение редуцированной матрицы плотности — это усреднение по всем внешним степеням свободы выделенной подсистемы (по ее внешнему окружению). В некотором отношении это проведение границы между подсистемой и ее окружением, когда подсистема может рассматриваться независимо от него. Мы как бы «вырезаем» нашу подсистему из более сложной структуры и рассматриваем ее в качестве самостоятельного объекта. В результате этой операции пространство допустимых состояний подсистемы уменьшается, частичная матрица плотности имеет меньшую размерность, чем исходная система, например, из матрицы 4 × 4 получается матрица 2 × 2, как было показано выше, когда из матрицы (3.3) получалась (3.5).
Эта мера запутанности была предложена Чарльзом Беннеттом (Charles H. Bennett) с соавторами[81] в 1996 году.
Затем Вуттерс[82] ввел более общую количественную характеристику запутанности двусоставной системы — не только для чистого, но и для смешанного состояния. Называется она concurrence (согласованность, гармония)[83]. Она была введена достаточно сложно, с использованием «спин-флип» преобразования.
Впоследствии было найдено[84] более удобное и общее выражение для вычисления согласованности уже в многосоставных системах:
C = {2[1–Tr(ρA2)]}1/2.
Оно справедливо для произвольных замкнутых систем и характеризует меру квантовой запутанности подсистемы А (любой размерности) со всем ее окружением (также любой размерности).
Согласованность в качестве меры квантовой запутанности использовалась в широко известном эксперименте по макроскопической запутанности[85].
В целом, наличие квантовой запутанности в макроскопических системах трудно подвергнуть сомнению, поскольку есть «железное» утверждение (принцип несепарабельности) — если системы взаимодействуют друг с другом, то они квантово запутаны между собой (связаны нелокальными квантовыми корреляциями). Наличие любого взаимодействия — достаточное условие для квантовой запутанности (несепарабельности) взаимодействующих объектов. Но одно дело — это понимать и декларировать, а другое — уметь количественно описывать эту запутанность и сопоставлять адекватность теоретического описания с результатами физических экспериментов.
Были предложены и другие меры квантовой запутанности, постоянно ведется поиск наиболее удобных в практическом применении. Из них наиболее известны следующие.
1. Перес-Городецки, или PPT (positive partial transpose) критерий сепарабельности:
Peres. Phys. Rev. Lett. 77, 1413 (1996); Horodecki M., Horodecki P. and Horodecki R. Phys. Lett. A 223, 1 (1996).
2. Основанная на PPT-критерии мера запутанности — отрицательность (negativity):
Życzkowski K., Horodecki P., Sanpera A. and Lewenstein M. Phys. Rev. A 58, 883 (1998); Vidal G. and Werner R. F. Phys. Rev. A 65, 032314 (2002).
3. Относительная энтропия запутанности (relative entropy of entanglement):
Vedral V., Plenio M. B., Jacobs K. and Knight P. L. Phys. Rev. A 56, 4452 (1997).
4. CCN (computable cross-norm) критерий:
Rudolph O. Phys. Rev. A, 67, 032312 (2003).
5. Мера, основанная на ранге Шмидта:
Eisert J. and Briegel H. J. Phys. Rev. A 64, 022306 (2001).
6. Мера запутанности, основанная на метрике гильбертова пространства (расстоянии Гильберта-Шмидта), эту меру можно рассматривать как информационное расстояние между двумя состояниями:
Lee J., Kim M. S., Bruker Časlav. Phys. Rev. Lett. 91, 087902 (2003) и некоторые другие.
В наиболее явном виде связь между квантовой запутанностью и квантовой информацией устанавливает мера запутанности, основанная на метрике гильбертова пространства (расстоянии Гильберта-Шмидта). Приведу небольшую цитату из указанной выше работы: «Математические формулировки всех фундаментальных физических теорий основаны на концепции абстрактного пространства. Структура пространства и теорий определена его метрикой. Например, метрика Минковского определяет математическую структуру специальной теории относительности, и метрика Римана определяет структуру общей теории относительности. В квантовой механике расстояние Гильберта-Шмидта (Hilbert-Schmidt distance) является естественной метрикой гильбертова пространства».
В настоящее время расстояние Гильберта-Шмидта довольно часто рассматривается в качестве меры, показывающей, насколько близки друг к другу два данных состояния. Эта близость, прежде всего, информационная, например, в указанной выше работе авторы вводят операторную меру, которая «…эквивалентна расстоянию Гильберта-Шмидта <…> и может интерпретироваться как информационное расстояние между двумя квантовыми состояниями. Кроме того, тот факт, что операторная мера является эквивалентной расстоянию Гильберта-Шмидта, говорит о том, что внутренняя структура Гильбертова пространства отражает теоретико-информационные основы квантовой теории».
Таким образом, расстояние Гильберта-Шмидта определяет структуру пространства состояний (гильбертова пространства) в квантовой теории, и эта структура имеет чисто информационную природу.
Здесь мы подошли к очередному важному вопросу — что же такое информация в квантовой теории? О ней мы часто упоминали, но до сих пор это были лишь общие слова. Теперь поговорим об этом более подробно.
3.4. Физика информации
«Информация физична» — эти слова сейчас часто можно услышать из уст физиков, и они стали своеобразным девизом исследователей, работающих в физике квантовой информации. И это не тривиальное утверждение — «носителем информации являются физические системы». Эти слова нужно понимать в прямом смысле — информация сама по себе является объективной физической величиной в ряду других — таких как масса, энергия, импульс и т. д. Подчеркну: именно объективной величиной, которая не зависит от того, что мы думаем об этой информации, измеряем ее или нет, и как измеряем, — система все равно будет содержать определенное количество информации, так же как, например, объект материального мира обладает некоторой массой.