Татьяна Данина - Механика тел
Однако если мы будем изучать инерцию иначе – как способность просто сохранять состояние движения, тогда картина несколько изменится. И уже нельзя будет изучать инертность тела по его способности сопротивляться изменению его покоя или вектора движения. Нет, в этом случае нам надо будет суммировать весь путь, пройденный телом, от начала его движения и до полной остановки. Причем – независимо от того, как будет меняться при этом направление движения. А в случае жидких или газообразных тел вообще происходит их разрушение. Поэтому надо исследовать движение отдельных капель или потоков. В ходе своих наблюдений вы придете к неожиданным выводам. Оказывается, жидкие тела дольше сохраняют состояние движения, нежели плотные – при равной первоначальной скорости. А газообразные – дольше, чем жидкие. Причина этого – следующая.
Частицы с Полями Притяжения в составе тела поглощают эфир, испускаемый частицами с Полями Отталкивания в составе того же тела. Нет разницы – покоится тело или движется – частицы Инь поглощают эфир. В движущемся теле они постепенно забирают и тот эфир, что толкает тело, заставляет его двигаться по инерции. Тем самым, они постепенно уменьшают Силу Инерции тела, поглощают его импульс. Если процент частиц Инь в теле больше частиц Ян, тело постепенно замедляет свое движение и останавливается. Чем больше процент частиц Инь, тем быстрее остановится тело. Именно поэтому тяжелым телам с большой плотностью нужно сильно трансформировать свои частицы Ян, чтобы они испускали эфир с такой скоростью, чтобы его хватало бы на «большие аппетиты» частиц Инь, процент которых в таком теле велик, и еще оставалось, чтобы двигать тело вперед.
В составе жидкого тела частиц Инь меньше, чем в твердом и величина Полей Притяжения меньше, а частиц Ян, напротив, больше, чем в твердом теле. Если заставить двигаться с одной и той же скоростью два мяча – наполненный песком, и другой – заполненный водой, то суммарно «жидкий» дольше пробудет в состоянии движения, нежели «песочный». Причина – в жидком теле частицы Инь не так быстро поглощают эфир, необходимый для движения, по сравнению с песочным мячом.
Что касается газообразного тела, то в нем процент частиц Инь еще меньше, меньше величина их Полей Притяжения. А с частицами Ян все наоборот – их больше и величина их Полей Отталкивания меньше. Именно поэтому газообразные тела дольше находятся в состоянии инерционного движения. Если взять три мяча – заполненные песком, жидкостью и воздухом – и заставить их двигаться с одной и той же скоростью, то дольше всего будет двигаться тот, что наполнен воздухом. Движение мяча необязательно будет происходить по прямой. Он может упасть на землю, и подскакивать, подрагивать, катиться. Но он дольше всего будет находиться в этом «возбужденном», «живом» состоянии, указывающем, что воздух в нем находится в движении – его отдельные молекулы не остановились. Жидкий останется «живым» меньше времени. А песочный шмякнется на землю и почти сразу замрет.
Здесь очень важна среда, по которой или в которой происходит движение. Это касается тел в любом агрегатном состоянии. Если движение происходит по твердой поверхности – тела останавливаются быстрее. Про газы мы не можем сказать, что они движутся по твердой поверхности. Но контакт при движении с твердыми телами также замедляет их движение. А причина этого все та же – в плотных телах больше процент частиц Инь, которые поглощают эфир, необходимый для движения тела. Контакт с жидкой средой замедляет движение тел в меньшей мере, нежели контакт с твердой средой. А движение, полностью протекающее в газообразной среде, вообще, может длиться очень долго. А все потому, что газы при н.у. характеризуются мощными Полями Отталкивания. Точнее, их силовые поля – это смесь Полей Отталкивания и Притяжения. Но в целом они создают нейтральную среду, не отбирающую эфир у тел, которые двигаются сквозь них. Что касается благородных газов, то они, вообще, не отбирают эфир, а даже делятся им, так как у них Поле Отталкивания превышает Поле Притяжения. А потому инерционное движение в среде из благородных газов может протекать почти бесконечно долго. Это неплохо бы взять на вооружение тем инженерам, которые мечтают создать вечный двигатель. Ну, если не вечный двигатель, то хотя бы увеличение КПД обычного двигателя, например, турбины. Если использовать в качестве смазки гелий, то это значительно уменьшит трение. И турбина будет совершать большее число оборотов с меньшими энергозатратами. Насколько нам известно, в машиностроении уже используется этот метод. Он носит название газовая смазка подшипников.
Что касается жидких и газообразных тел без «упаковки», то они слишком легко разрушаются. Их легко приводить в движение, но путь они проходят, разбиваясь на части.
20. Закон сохранения импульса
Закон сохранения импульса гласит – импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Замкнутой называется механическая система тел, на которую не действуют внешние силы.
Ранее мы уже разбирали два момента. Во-первых, все законы физики мы рассматриваем в отношении элементарных частиц, химических элементов и тел. А во-вторых, понятия «импульс» и «сила» следует считать синонимами. «Замкнутая механическая система» – это то же самое, что частица, элемент или тело, на которые не действуют «Внешние Силы» (внешние влияния, способные изменить силу).
Таким образом, закон сохранения импульса является ничем иным, как повторением первого закона механики – Закона Инерции. В отсутствии внешних воздействий, способных изменить силу, частица, элемент или тело пребывает в состоянии покоя, либо движется прямолинейно и равномерно – т. е. сохраняет неизменной величину силы, или говоря иначе, импульса.
21. Центробежная Сила – это Сила Инерции
Если любое тело заставить вращаться вокруг собственной оси или по кругу, вокруг какого-либо центра, химические элементы, входящие в его состав, будут следовать по криволинейным (круговым) траекториям. При этом, элементы тела, наиболее удаленные от оси или центра вращения, в первую очередь будут стремиться “оторваться” от тела. И чем больше скорость вращения, тем больше вероятность “отрыва”.
Именно это стремление оторваться от тела – т. е. отдалиться от оси или центра вращения – в механике как раз и называют Центробежной Силой. В действительности, Центробежная Сила – это давление, которое оказывают элементы “снизу” на вышележащие элементы, стремясь отдалиться от оси или центра вращения.
Давайте рассмотрим, какова причина существования стремления элементов отдаляться от оси или центра вращения.
Любой случай движения частицы, кроме движения под влиянием Поля Притяжения, это движение относительно эфирного поля. Какова бы ни была траектория движения частицы – прямолинейной или криволинейной. А движение относительно эфирного поля приводит, как известно, к трансформации частицы.
Таким образом, во вращающемся теле все частицы в составе элементов движутся относительно эфирного поля, и, следовательно, трансформируются – т. е. нагреваются. Это означает, что Поля Притяжения частиц уменьшаются, а Поля Отталкивания растут. Т. е. возрастает скорость образования “эфирных подушек” частицами с Полями Отталкивания и уменьшается скорость образования “эфирных ям” частицами с Полями Притяжения. При этом, если химические элементы тела обладают Полями Притяжения, то величина этих Полей уменьшается. Если в составе тела есть нейтральные элементы, то они приобретают Поля Отталкивания. А если в составе тела есть элементы с Полями Отталкивания, то их величина возрастает. Все это приводит к ослаблению связей между элементами вращаемого тела.
В первую очередь, отрываются от вращающегося вокруг оси или вращаемого вокруг центра тела элементы с Полями Отталкивания. И чем больше величина Поля Отталкивания, тем больше вероятность отрыва. Сложнее отрываться нейтральным элементам. Еще сложнее – элементам с Полями Притяжения. И чем больше величина Поля Притяжения элемента, тем сложнее ему оторваться.
А теперь, что касается инерции вращающегося или вращаемого тела.
Под “напором” эфирного поля эфир, испускаемый частицами с Полями Отталкивания в составе элементов вращающегося (вращаемого) тела, смещается назад вдоль касательной, проведенной к круговой траектории движения данного химического элемента. Этот смещающийся назад эфир толкает вперед по касательной частицы с Полями Отталкивания. А они, в свою очередь, толкают все остальные частицы в составе химического элемента. Все это означает, что в каждый момент времени каждый элемент в составе тела “готов” к движению по инерции, направление которого совпадает с касательной. Именно благодаря инерции, элемент, отрывающийся от вращающегося (вращаемого) тела, движется по касательной до тех пор, пока не притянется или не столкнется с каким-либо элементом окружающей среды.