Сергей Доронин - Квантовая магия
Однако, с практической точки зрения, самый важный вывод заключается в том, что, управляя степенью запутанности своего сознания с окружением, мы в состоянии расширить свое восприятие. Во-первых, можно «размягчить» данный предметный мир и научиться воспринимать содержащуюся в нем дополнительную информацию. Для этого необходимо перейти в режим видения полевой энергетической структуры «твердых» объектов и даже структур, не имеющих предметного воплощения. Во-вторых, мы способны воспринимать и «проявлять» другие реально существующие проекции реальности, причем также в различных режимах, как в виде локального предметного мира, так и в виде нелокальных энергетических структур. И, в-третьих, наше сознание в состоянии создавать новые объекты реальности, ранее не существовавшие.
1.5. Нелокальность в окружающем мире. Экспериментальная проверка
Вопрос об обособленности объектов окружающей реальности, который мы рассматривали в предыдущем параграфе, достаточно четко может быть сформулирован в квантовой теории, и к настоящему времени осуществлена его экспериментальная проверка. Остановимся на этом более подробно.
Такие специфические черты квантовых систем[25], как нелокальность и квантовая запутанность, не имеют аналога в классической физике, и их проявления кажутся сверхъестественными для тех, кто привык иметь дело с классическим описанием окружающей реальности.
Первым, кто обратил внимание на эти особенности квантовых систем, был Эйнштейн, который в 1935 году на примере запутанных состояний ЭПР-пары[26] пытался доказать неполноту описания мира квантовой механикой. Возможность существования мгновенного действия на расстоянии ему казалась противоестественной, и в этом контексте он употреблял термин «телепатия»[27].
Эйнштейн исходил из привычных представлений, и ему казалось правильным считать, что, если две системы A и B пространственно разделены, тогда при полном описании физической реальности действия, выполненные над системой А, не должны изменять свойства системы В. Этот принцип часто называют принципом локальности Эйнштейна.
В том, что для двух удаленных коррелированных частиц измерение проекции одного спина[28] (вверх) заведомо определяет проекцию другого спина (вниз), нет пока ничего удивительного, квантового. В классической ситуации могут существовать аналогичные корреляции между результатами измерения. Например, если у нас было два детских кубика разного цвета — красный и синий, которые затерялись в комнате, то, найдя кубик красного цвета, можно без измерения второго кубика утверждать, что, когда мы его найдем, увидим синий кубик. Квантовая специфика оказывается более сложной и интересной. Анализ показывает, что спин, как внутренняя характеристика частицы, для некоторого типа состояний в качестве локального элемента реальности может не существовать вовсе до тех пор, пока его не измерят. Это как в нашем примере с кубиками — пока мы не возьмем в руки первый кубик, они вообще не имеют своего цвета в качестве индивидуальной локальной характеристики. Кубики «бесцветны», но, как только мы берем в руки один кубик, он тут же «окрашивается» в синий или красный цвет с равной вероятностью, и после этого второй кубик, который мы не видим, тоже приобретает свой цвет. До измерения «цвет» находится в нелокальном суперпозиционном состоянии, его нельзя распределить на два локальных объекта. Лишь при измерении в процессе декогеренции «цвета» локализуются, разделяются на независимые части.
Примерно то же самое происходит со спином. Результаты квантовомеханических расчетов показывают, что если система находится в состоянии типа ЭПР-пары, то в этом случае оказывается несправедливым наше интуитивное предположение о том, что спин до измерения существует как реальная и объективная физическая характеристика частицы. В квантовой теории делается и более общий вывод: если система исходно находилась в нелокальном суперпозиционном состоянии, то ее составные части, как локальные классические объекты, не существуют до тех пор, пока не произойдет декогеренция.
Здесь только нужно учитывать, что у сложной макроскопической системы обычно очень много степеней свободы, и по одним из степеней она может быть локальна, сепарабельна (разделима на независимые части), а по другим — несепарабельна, неразделима на части. Это легко пояснить на примере частиц, которые могут находиться в разных местах, то есть будут разделены по пространственным координатам, но в то же время по спиновым степеням свободы составлять единое целое.
Своим примером с ЭПР-парой Эйнштейн пытался доказать, что квантовая механика неполна и не способна однозначно описать реальность в принципе. Отсюда возникло предположение о скрытых параметрах, которые в состоянии спасти ситуацию и помогут вернуться к привычному, локальному описанию объектов. Однако конечный результат исследования этой проблемы оказался противоположным.
В итоге выяснилось, что более правильным является именно квантовомеханический подход. И результат такого подхода несовместим с предположением, что наблюдаемые свойства объекта (в общем случае) существуют до наблюдения как объективная самостоятельная внутренняя характеристика.
Первый реальный шаг к такому выводу сделал Белл в 1964 году, когда он, анализируя ситуацию со скрытыми параметрами, сформулировал свои знаменитые неравенства[29].
Он ввел понятие «объективной локальной теории», которой придерживались Эйнштейн и сторонники скрытых параметров. В этой теории предполагается, что
● физические свойства системы существуют сами по себе, они объективны и не зависят от измерения;
● измерение одной системы не влияет на результат измерения другой системы;
● поведение не взаимодействующей с окружением системы зависит лишь от условий в более ранние моменты времени.
Это привычные для всех нас представления об окружающей реальности.
Теорема Белла утверждает, что «объективная локальная теория» и квантовая механика дают разные предсказания для результатов измерения. Естественно, возник вопрос, каким же на самом деле является реальный мир, и неравенства Белла помогли ответить на него непосредственно — на основании анализа результатов экспериментов. Такие эксперименты были проведены А. Аспектом[30] и впоследствии многими другими исследователями. Их результаты показали, что окружающая нас реальность является квантовой в своей основе, и все вышеперечисленные предположения «объективной локальной теории» в общем случае несправедливы.
Физических экспериментов по проверке локального реализма было проведено очень много[31], и все они опровергают положения «объективной локальной теории», свидетельствуя в пользу нелокальности окружающей нас реальности.
Я остановлюсь лишь на одном, наиболее ярком эксперименте, который не оставляет практически никаких шансов «локальным реалистам».
Результаты этого эксперимента были опубликованы в Nature в 2000 году[32].
В этом эксперименте[33] исследовались трехчастичные запутанные состояния (так называемые ГХЦ-состояния — Гринбергера, Хорна, Цайлингера), которые позволяют дать достоверный, а не статистический результат по проверке локального реализма.
Гринбергер, Хорн и Цайлингер показали, что квантовомеханические предсказания некоторых результатов измерений трех запутанных частиц противоречат локальному реализму в случаях, когда квантовая теория дает достоверные, то есть нестатистические предсказания. В этом — отличие от экспериментов типа Эйнштейна-Подольского-Розена с двумя перепутанными частицами по проверке неравенства Белла, где противоречие с локальным реализмом возникает только для статистических предсказаний.
Применение эйнштейновского понятия локальности означает, что скорость распространения информация не может превышать скорость света. Соответственно результат измерения одного фотона не должен зависеть от того, проведено ли одновременно измерение двух других фотонов, а также от исхода этих измерений. Но как с точки зрения локального реализма объяснить полные корреляции между фотонами? Единственный способ — предположить, что значение величины меняется не в результате измерения, а просто вследствие ее стохастического (случайного) поведения. То есть она может принимать различные значения потому, что это особенность ее поведения — быть изменчивой без всяких причин. Например, как в рассматриваемом эксперименте: каждый фотон якобы содержит заранее все возможные результаты измерения в виде случайного набора, но все они не зависят от измерения других фотонов.