Антон Первушин - Атомный проект. История сверхоружия
Но что же в таком случае представляет собой обыкновенный свинец с атомным весом 207,2, который извлекают из горных пород, находящихся вдали от каких-либо природных радиоактивных веществ, и который, видимо, был стабилен на протяжении всей истории Земли? Состоит ли этот стабильный свинец из атомов еще одного изотопа, имевшего дробный атомный вес? Или стабильный свинец представлял собой смесь изотопов, каждый из которых обладает различным целым атомным весом? Является ли суммарный атомный вес дробным, потому что представляет собой некую среднюю величину?
Ответить на все эти непростые вопросы, связанные со свинцом, в то время не смогли, но истина все-таки была найдена в связи с исследованиями другого элемента – редкого газа неона, имевшего атомный вес 20,2.
В 1912 году Джозеф Томсон занялся изучением неона, пропуская через него все тот же пучок катодных лучей. Электроны сталкивались с атомами неона и выбивали их собственные электроны. В результате оставался неоновый ион (атом с зарядом, образующийся в результате потери электронов), несущий один положительный заряд. Ионы неона двигались в электрическом поле точно так же, как это делали электроны, но в противоположном направлении, поскольку имели положительный заряд. Если бы все неоновые ионы обладали одинаковой массой, то у них должна была бы быть общая траектория. Если бы масса была различна, то более тяжелые должны были бы двигаться по другой траектории. Во время опытов, проводимых Томсоном, ионы неона попадали на фотографическую пластинку, которая затемнялась в соответствующем месте. Если бы все ионы имели одну массу, то на пластинке получилось бы одно пятно. Однако Томсон получил две области затемнения, доказав, что существуют два типа ионов, обладающих различными массами, которые образовывали траектории двух видов, завершавшиеся в разных местах. Изучив расстояние между точками, Томсон показал, что один изотоп неона имеет атомный вес 20, а другой – атомный вес 22. Далее, исходя из степени затемнения каждого пятна, он сделал вывод, что обыкновенный неон состоял из атомов, которые на 90 % были неоном-20 и на 10 % неоном-22. Вот и получалось, что общий атомный вес неона составляет 20,2 – то есть средний атомный вес двух изотопов.
Джозеф Томпсон оказался первым исследователем, который сумел разделить изотопы. Позже подобные инструменты стали называть «масс-спектрометрами» (термин ввел английский физик Френсис Астон, который построил аппарат такого типа в 1919 году). С его помощью Астон изучил все элементы, которые только смог. В частности, оказалось, что в действительности неон на 90,48 % состоит из неона-20 и всего на 9,25 % из неона-22. Очень небольшое количество атомов, всего 0,27 %, относилось к третьему изотопу – неону-21.
Что касается обыкновенного свинца в нерадиоактивных породах, получилось следующее: 24,1 % свинца-206, 22,1 % свинца-207 и 52,4 % свинца-208. Астон установил, что существует еще четвертый изотоп, свинец-204, которому принадлежат оставшиеся 1,4 % и который вообще не является продуктом радиоактивных серий.
Стремясь избежать путаницы, среднюю массу изотопов, из которых складывался каждый конкретный элемент, продолжали называть атомным весом (массой) этого элемента. О ближайшем к массе индивидуальных изотопов целом говорили как о «массовом числе» этого изотопа. Таким образом, обыкновенный свинец состоит из изотопов с массами 204, 206, 207 и 208, а его атомный вес равен 207,19. Неон состоит из изотопов с массовыми числами 20, 21 и 22, а его атомный вес составляет 20,183. И так далее.
Иногда атомный вес элемента выражается почти целым числом, и все же этот элемент имеет больше одного изотопа. В этом случае один из изотопов составляет почти всё число, в то время как остальные присутствуют в столь малых количествах, что их можно выделить с большим трудом, и среднее число получается почти целым. Скажем, гелий имеет атомный вес 4,0026, и действительно, почти все атомы, составлявшие его, это гелий-4. Однако 0,0001 % атомов, или по крайней мере один из миллиона, составляет изотоп гелий-3.
Даже у водорода обнаружились изотопы! Его атомный вес почти равен 1, и большинство его атомов представляют собой обыкновенный водород-1. Однако вскоре американский химик Гарольд Юри обнаружил изотоп водород-2, который оказался почти вдвое тяжелее, чем водород-1. Ни у одного элемента изотоп не отличался от обычных атомов настолько сильно. Поэтому и химические свойства водорода-2 и водорода-1 различались больше, чем обычно. Чтобы отметить это загадочное явление, Ури присвоил «тяжелому» водороду-2 название «дейтерий» (от греческого слова, означающего «второй»).
Не удалось избежать новой классификации и радиоактивным элементам. Атомный вес урана 238,029, поэтому большинство его атомов составляет уран-238, однако в 1935 году канадский физик Артур Демпстер выяснил, что 0,7 % его атомов составляет более легкий изотоп уран-235. Атомы изотопов урана существенно отличались по радиоактивным свойствам. Уран-238 имел период полураспада 4,5 миллиарда лет, в то время как у урана-235 период полураспада составлял всего лишь 700 миллионов лет. Более того, при распаде уран-235 «разбивался» на три стадии, до актиния. Именно уран-235, а не сам актиний, давал начало радиоактивным сериям.
Открытие изотопного состава элементов позволило сделать первый шаг к технологии высвобождения атомной энергии. Однако перед тем необходимо было ответить на ключевой вопрос: почему атомы одного и того же вещества имеют разный вес? На поиски ответа ушло больше десяти лет.
Третья частица
Как мы видели, период с 1895 по 1919 год был густо насыщен важными открытиями в области ядерной физики. Но после 1919 года развитие этой науки, казалось, приостановилось. И это неслучайно.
Вспомним, что для исследования атома физики использовали явление радиоактивности. Альфа-частицы (протоны) служили снарядами, которыми ученые бомбардировали атом, пытаясь проникнуть в его тайны. Но оказалось, что они не слишком подходят для того, чтобы разобраться в глубинном устройстве ядра: альфа-частицы заряжены положительно, но такой же заряд имеет и ядро атома. Одинаково заряженные частицы отталкиваются друг от друга, и очень незначительное количество альфа-частиц может преодолеть эту «силу отталкивания». Позже подсчитали, что при проведенной Резерфордом «алхимической» бомбардировке азота лишь 1 альфа-частица из 300 000 поражала ядро.
Только в 1932 году состоялось открытие, которое в конечном итоге позволило заглянуть внутрь ядра и найти способ высвободить атомную энергию.
Итак, ученые установили, что порядковый номер элементов в таблице Менделеева определяется числом протонов в ядре атома. Например, у углерода шесть протонов в ядре – он и стоит на шестом месте. Но атомный вес (то есть вес атома по отношению к атому водорода) равен двенадцати. Еще пример. Гелий стоит на втором месте. Значит, в ядре атома гелия два протона. Но атомный вес гелия в четыре раза больше, чем атомный вес водорода, содержащего один протон. Почему же атомный вес гелия в четыре раза больше, чем атомный вес водорода? Никаких объяснений этому не было. И такая «аномалия» наблюдалась по отношению к атомам всех элементов, кроме водорода.
Оставалось предположить, что в ядре атома имеются какие-то неизвестные частицы, которые утяжеляют его. Впервые такую гипотезу выдвинул все тот же Эрнест Резерфорд в 1920 году. Он сделал сообщение на основе работ своего талантливого ученика, Генри Мозли, исследованиями которого руководил и которого в то время уже не было в живых. Поскольку гипотетическая частица в ядре атома должна быть электрически нейтральной, в 1921 году американский химик Уильям Харкинс предложил именовать ее «нейтроном».
Чтобы подтвердить или опровергнуть гипотезу Мозли-Резерфорда, ученые приступили к новым исследованиям. Двое немецких физиков, Вальтер Боте и Генрих Беккер, облучали альфа-частицами ряд элементов. Когда они взяли для этой цели бериллий, то обнаружили, что из бериллия исходят какие-то лучи, обладающие огромной проникающей способностью. Проницаемость лучей Рентгена, альфа– и гамма-лучей по сравнению с ними была просто ничтожной. Если известные до сих пор лучи целиком задерживались относительно небольшим слоем свинца, то лучи, исходящие из бериллия, свободно проходили через самые толстые стены. Так появилась новая загадка – «бериллиевое» излучение.
Физики предположили, что бериллиевые лучи (или, как их еще назвали, «излучение Боте-Беккера») – это новый вид электромагнитных волн. В 1931 году им заинтересовалась супружеская пара молодых французских ученых: Ирен Кюри, дочь Марии и Пьера Кюри, и ее муж Фредерик Жолио. Когда они поженились, то решили не прерывать знаменитую родословную и принять двойную фамилию – Жолио-Кюри.
Фредерик и Ирен Жолио-Кюри попробовали пропускать бериллиевые лучи через вещества, содержащие водород (например, парафин). Они обнаружили, что под их действием ядра атомов водорода (то есть протоны) начинают двигаться так быстро, что величина их скорости не может быть объяснена воздействием электромагнитных волн. Об этом явлении они и сообщили на заседании Парижской академии наук 18 января 1932 года.