KnigaRead.com/
KnigaRead.com » Разная литература » Военное » Олег Фейгин - Цепная реакция. Неизвестная история создания атомной бомбы

Олег Фейгин - Цепная реакция. Неизвестная история создания атомной бомбы

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Олег Фейгин, "Цепная реакция. Неизвестная история создания атомной бомбы" бесплатно, без регистрации.
Перейти на страницу:

Фейнман – Нобелевский лауреат 1965 г. по физике «за фундаментальный вклад в развитие квантовой электродинамики, имевший глубокие последствия для физики элементарных частиц».

Мюррей Гелл-Манн (р. 1929)

Выдающийся американский физик-теоретик родился в Нью-Йорке, в семье иммигрантов из Черновцов. После окончания средней школы в возрасте 15 лет успешно поступил в Йельский университет, а затем в аспирантуру Массачусетского технологического института, где и защитил докторскую диссертацию по физике. В 1952 г. перешел в Чикагский университет, где работал с Энрико Ферми. В возрасте 23 лет положил начало «кварковой» революции в физике элементарных частиц, опубликовав основополагающую работу по новым характеристикам микрочастиц – «странностям» и «очарованиям».

Классифицируя новые частицы, Гелл-Манн в 1964 г. предложил особую группировку элементарных частиц, из которой выросли кварковые модели. В них вводились кварки – очень необычные субэлементарные частицы, из которых состоят адроны. Название «кварк» Гелл-Манн взял из романа известного мистика Джеймса Джойса «Поминки по Финнегану», где в одном из эпизодов есть фраза «Три кварка для мистера Марка!» Кварки вскоре были признаны основополагающими составляющими элементарных частиц и прочно вошли в современную теорию кваркового взаимодействия, которая называется квантовой хромодинамикой (КХД) и во многом основывается на работах Гелл-Манна. Кроме того, в сотрудничестве с Ричардом Фейнманом ему удалось впервые прояснить природу электрослабого внутриядерного взаимодействия. В 1990-х гг. прошлого века Гелл-Манн занялся новой проблемой сложных систем и по результатам своих исследований написал популярную книгу «Кварки и ягуар: приключения в простом и сложном». Название книги взято из абстрактно-мистической поэмы Артура Шжэ, где повторяется рефрен: «Мир кварка непосредственно связан с ягуаром, мечущимся в ночи».

Словарь терминов

Абсолютно черное тело (АЧТ) – физическая абстракция, введенная Густавом Кирхгофом в 1862 г. и широко применяемая в термодинамике как идеализированное тело, поглощающее все падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Спектр излучения АЧТ определяется только его температурой. В классической теории излучения анализ спектра АЧТ привел к парадоксу «ультрафиолетовой катастрофы», решенной с помощью гипотезы квантов действия Макса Планка.

Адроны — микрочастицы, включающие барионы с полуцелым спином, состоящие из трех кварков, и мезоны обменного вида, участвующие в сильных ядерных взаимодействиях.

Альфа-распад – радиационный распад атомных ядер с испусканием альфа-частиц – ядер атомов гелия, состоящих из двух протонов и двух нейтронов.

Аннигиляция – процесс столкновения частицы и ее античастицы, при котором происходят рождение новых частиц и взрывное выделение энергии, а исходные частицы взаимно уничтожают друг друга.

Античастица – у каждой частицы материи есть соответствующая античастица. При соударении частицы и античастицы происходит их аннигиляция, в результате которой выделяется энергия и рождаются другие частицы.

Атом – наименьшая частица каждого химического элемента. Каждому химическому элементу соответствует совокупность определенных атомов. Связываясь друг с другом, атомы одного или разных элементов образуют более сложные частицы, например молекулы. Все многообразие химических веществ (твердых, жидких и газообразных) обусловлено различными сочетаниями атомов между собой. Атомы могут существовать и в свободном состоянии – в газе и плазме.

Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных электронов. Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами ядра. Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значительной степени условны и зависят от способов их определения. Ядро атома состоит из протонов и нейтронов, удерживаемых ядерными силами. Положительный заряд протона и отрицательный заряд электрона одинаковы по абсолютной величине; нейтрон не обладает электрическим зарядом. Заряд ядра является основной характеристикой атома, обусловливающей его принадлежность к определенному химическому элементу. Порядковый атомный номер элемента в периодической системе Менделеева равен числу протонов в ядре. В электрически нейтральном атоме число электронов в облаке равно числу протонов в ядре. Однако при определенных условиях он может терять или присоединять электроны, превращаясь соответственно в положительный или отрицательный ион.

Атомное ядро – центральная положительно заряженная часть атома, состоящая из нуклонов – протонов и нейтронов. Масса атомного ядра примерно в более чем 400 раз больше массы всех атомных электронов. Размеры атомного ядра составляют ~ 10–12–10–13 см. Нуклоны удерживаются в ядре ядерными силами сильного взаимодействия, эффективными только на внутриядерных дистанциях Размеры атомных ядер зависят от количества составляющих их нуклонов. Средняя плотность ядерного вещества чрезвычайно велика по сравнению с плотностью обычных веществ и составляет около 1014 г/см3. Плотность распределения нуклонов в ядре почти постоянна в центральной его части и экспоненциально убывает на периферии.

Бета-распад — радиоактивное превращение атомных ядер с генерацией электронов, позитронов, нейтрино и антинейтрино.

Бозоны (Бозе-частицы) – микрочастицы с нулевым или целым спином, подчиняющиеся статистике Бозе – Эйнш– тейна.

Вакуум (вакуумное состояние) – в квантовой физике представляет собой «физический вакуум» как основное состояние с минимальной энергией, нулевыми импульсом, угловым моментом, электрическим зарядом и другими квантовыми числами квантованных полей. В математической физике используется понятие «математического вакуума», определяемого как состояние, в котором отсутствуют какие-либо реальные частицы и действие на который операторов уничтожения дает нулевой результат. По современным представлением вакуум перенаселен виртуальными частицами, участвующими в виртуальных процессах, проявляющихся в специфических эффектах взаимодействия с реальными частицами.

Виртуальные частицы — сверхкороткоживущие микрочастицы, возникающие и исчезающие в флуктуациях соответствующих квантовых полей. Чаще всего в физическом вакууме рождаются и исчезают гамма-кванты и электрон-позитронные пары.

Гамма-излучение – сверхкоротковолновое электромагнитное излучение с чрезвычайно малой длиной волны (< 5×10−3 нм) и, вследствие этого, ярко выраженными корпускулярными и слабовыраженными волновыми свойствами. Гамма-кванты электромагнитного поля представляют собой фотоны с высокой энергией. На электромагнитной шкале волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. Гамма-излучение испускается при переходах между возбужденными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т. д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях.

Гамма-излучение было открыто французским физиком Полем Виллардом в 1900 г. при исследовании излучения радия.

Гамма-распад – ядерный процесс, при котором возникает гамма-излучение. Гамма-кванты могут испускаться (поглощаться) атомными ядрами при переходах из одного квантового состояния в другое, при превращениях элементарных частиц, торможении заряженных частиц высокой энергии, синхротронном излучении.

Камера Вильсона – измерительное устройство, сконструированное в 1912 г. шотландским физиком Чарльзом Томсоном Риз Вильсоном для исследования заряженных частиц. Действие камеры основано на использовании явления конденсации пересыщенного пара в виде мельчайших капель жидкости на различных центрах конденсации, которыми могут служить ионы, образующиеся вдоль следов – треков заряженных частиц. Подобные следы хорошо видны и могут быть легко сфотографированы. Исследования в камере могут проводиться с искусственным и естественным радиационным фоном с использованием внутрикамерных источников и естественных потоков радиации, таких как ливни космических частиц, попадающие в камеру через прозрачную мембрану. Природа и свойства исследуемых частиц устанавливаются по их пробегу в скрещенных магнитных полях. Для исследования малоэнергетичных частиц камеру вакуумируют, а для высокоэнергичных, наоборот, заполняют газом при повышенном давлении иногда в десятки атмосфер. Камера Вильсона сыграла важную роль в изучении радиации, будучи на протяжении десятилетий практически единственным методом регистрации потоков и ливней самых различных излучений. Однако впоследствии камера Вильсона уступила свое место искровым и пузырьковым камерам.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*