KnigaRead.com/
KnigaRead.com » Разная литература » Военная техника, оружие » Роман Красильников - Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века

Роман Красильников - Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Роман Красильников, "Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века" бесплатно, без регистрации.
Перейти на страницу:

— обеспечивать в походном положении совместно с кольцом обтюрации поперечную и продольную фиксацию изделия, а также его продольное направление при пуске за счет направляющих пазов;


Рис. 58. Схема транспортно-пускового контейнера.


— разделять рабочую (расширительную) полость и полость пусковой трубы;

— обеспечивать герметичность внутренней полости пусковой трубы, заполненной ингибитором и находящейся под забортным давлением;

— исключать прямой контакт с элементами изделия при пуске, что определяет распределение нагрузки по внешней оболочке изделия. Это также обуславливает необходимость увеличения диаметра поршня по отношению к калибру изделия;

— исключать прорыв воздуха из расширительной полости во внешнюю среду с целью соблюдения скрытности применения оружия.

Накладное кольцо обтюрации, располагаемое в передней части пусковой трубы, выполняет следующие функции:

— служит обтюрирующим элементом, участвующим в создании выталкивающего изделие давления в процессе его выпуска и уменьшающим потери жидкости из внутренней полости пусковой трубы;

— совместно с поршнем является направляющим элементом, ограничивающим движение выходящего из пусковой трубы изделия и его перемещения во время хранения;

— совместно с плунжером поршня образует демпфирующую полость, из которой по ходу движения в ней плунжера дросселируется жидкость, вытесняемая поршнем, что приводит к его торможению;

— является базой для размещения и крепления разрывной мембраны.

Предлагаемый подход к формированию облика транспортно-пускового контейнера является реализацией системного взгляда на создание образцов специальной техники, позволяющего комплексно рассматривать взаимосвязи между носителем, пусковым устройством и оружием и реализовывать их в виде структурно организованных конструктивных элементов.

Транспортно-пусковой контейнер работает следующим образом.

После снаряжения ТПК на арсенале и подачи его на носитель, подводный аппарат 1 постоянно находится под давлением внешней среды, располагаясь в жидкости с добавлением ингибитора, которой заправлена полость пусковой трубы 2, ограниченная разрывной мембраной 6 и поршнем 3. При этом фиксация аппарата относительно ТПК осуществляется за счет опоры его калиброванной головной части на обтюрирующее кольцо 4 и челноков 13 хвостовой части на проточки 14 в поршне 3. От продольных перемещений аппарат ограничен с одной стороны кольцевым демпфером 12, а с другой стороны — мембраной 6. Кроме того, продольное (вдоль пусковой трубы 2) перемещение поршня 3 и перемещение относительно него аппарата ограничивается срезными штифтами, которые, как можно заключить из их наименования, в процессе пуска срезаются под действием давления в расширительной камере (полости) 9. От разворота вокруг своей оси аппарат фиксируется за счет расположения челноков 13 в пазах 14 внутренней поверхности поршня 3, взаимодействующего с упорами 15, установленными в расширительной камере 9.

В расширительной камере и внутренних полостях основного клапана находится воздух под атмосферным давлением.

Для осуществления пуска подводного аппарата, после подачи питания на электромагнитный привод пускового клапана 10, начинается истечение газа из баллона 8 в расширительную камеру 9, по достижении в которой давления выше забортного гидростатического и сил сопротивления, поршень 3 начинает перемещаться в пусковой трубе 2, сначала выжимая из нее жидкость через обтюрацию, а, по мере дальнейшего возрастания давления, и подводный аппарат 1. При этом за счет избыточного, по отношению к забортному, давления и выдвижения аппарата 1 мембрана 6 разрывается, освобождая путь для его дальнейшего выхода.

Основной клапан 11 с закономерно увеличивающимся при пуске подводного аппарата проходным сечением открывается при падении давления в ресивере до 0,9–0,95 от начального давления, при этом его проходное сечение составляет 0,6–0,7 от максимального сечения, а полное раскрытие происходит при остаточном давлении в ресивере, составляющим 0,75–0,85 от начального.

Математическое моделирование работы транспортно-пускового контейнера показало, что назначенный начальный объем расширительной полости и установленные моменты срабатывания основного клапана обеспечивают выпуск подводного аппарата в заданном диапазоне глубин с достаточной выходной скоростью.

Следующий вариант реализации пусковой установки для НПА отличается оформлением проходного сечения регулятора газа (воздуха) высокого давления. Предлагается решение, в котором насадка выходной магистрали основного клапана снабжена сквозными каналами связи ее внутреннего объема с зазором между насадкой и внутренней профильной поверхностью втулки, в частности, каналы выполнены виде профильных по длине насадки прорезей.

Такое техническое решение регулятора обуславливает возможность создания единого основного клапана, расположения его привода вместе с пусковым клапаном малого сечения на внешней торцевой поверхности ресивера с отказом от тщательной регулировки пружины, поджимающей основной клапан к его седлу.

Предлагаемая конструкция поясняется следующими эскизами:

— на рис. 59 показано общее устройство контейнера (продольный разрез);

— на рис. 60 представлен вариант оформления проходного сечения регулятора воздуха высокого давления.

Описываемая конструкция предполагает аналогичное предыдущей размещение аппарата в полости пусковой трубы, поэтому более подробно будут рассмотрены элементы, отличные от описанных выше.

Так же, как и в первом примере, к заднему торцу пусковой трубы 2 герметично пристыкована включающая баллон с ВВД 12 секция, образующая расширительную камеру 13. На торцевой, ограничивающей расширительную камеру 13, стенке ресивера 12 размещен основной клапан 14, выходная магистраль которого выполнена в виде насадки 15, свободно находящейся во втулке 16, имеющей профильную внутреннюю поверхность 17 и жестко закрепленной на стенке поршня 3.

В приливе 18 внешнего торца ресивера 12 размещен поршень пневмопривода открывания основного клапана 14. Поршень 19 поджимается пружиной 20. В нем оформлено гнездо 22 системы наполнения ресивера воздухом, связанное каналом 21 с внутренним объемом ресивера 12. Для управления работой пневмопривода предусмотрен пусковой пневмоклапан 23 малого сечения с электромагнитным приводом.

На эскизе пунктиром показан герметичный колпак 24, обеспечивающий транспортную безопасность устройства.


Рис. 59. Схема ТПК.


Возможный вариант конструктивного оформления программного регулятора подачи воздуха из баллона 12 в расширительную полость 13 показан на рис. 60.


Рис. 60. Схема регулятора расхода воздуха — фигурной насадки.


Насадка 15 на выходной магистрали основного клапана 14 имеет фигурные прорези 25, обеспечивающие проход воздуха во внутреннюю полость втулки 16 и расширительную камеру 13.

Пусковая установка работает следующим образом.

На базе приготовления (например, арсенале) через гнездо 22 по каналу 21 в баллон набивается газ (воздух высокого давления). При этом, вследствие разности уплотняемых площадей с приводным поршнем 19, основной клапан 14 будет дополнительно к усилию пружины 20 прижат давлением к седлу, чем обеспечивается надежность герметизации баллона.

После подачи ТПК на носитель на глубине подводный аппарат 1 будет находиться в жидкости с добавлением ингибитора под забортным давлением вследствие малой жесткости мембраны 10.

Осуществление пуска подводного аппарата производится подачей электропитания на привод пневмоклапана 23. Давлением воздуха поршень 19 привода основного клапана 14 перемещает его в открытое положение. Из выходной магистрали воздух поступает во внутреннюю полость насадки 15 и далее по зазору между нею и профилированной поверхностью 17 втулки 16 в расширительную камеру 13, обеспечивая в ней повышение давления выше забортного. Поршень 3, перемещаясь вдоль пусковой трубы и компенсируя потерю воды через обтюрацию, обеспечивает ускоренное по отношению к нему движение подводного аппарата 1, так как площадь поршня 3 больше площади калиброванной части подводного аппарата, находящейся на срезе кольца 4 обтюрации.

В конце разгона подводного аппарата 1 поршень 3 тормозится и затем останавливается, так как плунжер 6 сжимает в демпфирующей полости 5 жидкость, постепенно под образующимся повышенным давлением выжимая ее через уменьшающееся с перемещением поршня сечение во внутреннюю полость пусковой трубы.

По одному из вариантов программное изменение проходной площади регулятора обеспечивается также (рис. 60) за счет профиля прорези 25 в насадке 15 и профиля внутренней поверхности 17 втулки 16, формирующих закономерное увеличение проходной площади регулятора при движении поршня 3.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*