KnigaRead.com/
KnigaRead.com » Разная литература » Прочее » Барбара Оакли - Думай как математик: Как решать любые задачи быстрее и эффективнее

Барбара Оакли - Думай как математик: Как решать любые задачи быстрее и эффективнее

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Барбара Оакли, "Думай как математик: Как решать любые задачи быстрее и эффективнее" бесплатно, без регистрации.
Перейти на страницу:

Immordino-Yang et al. 2012.

Эдвард де Боно — гроссмейстер по изучению креативности, предложенные им термины «вертикальное» и «латеральное» мышление примерно соответствуют моим терминам «сфокусированное» и «рассеянное» мышление (де Боно, 2012).

Внимательные читатели заметят мое упоминание того, что рассеянное мышление порой действует в фоновом режиме, при активном сфокусированном состоянии. Однако результаты исследований показывают, что нейронная сеть пассивного режима работы мозга (являющегося всего лишь одним из многих состояний покоя) успокаивается при активном сфокусированном состоянии. Так что же это? Как человеку и преподающему, и изучающему науки, мне кажется, что некоторая несфокусированная деятельность может продолжаться в фоновом режиме при сфокусированной работе, если сфокусированное внимание уведено из зоны интереса. Таким образом, в некотором смысле мое использование термина «рассеянный режим» может скорее пониматься как «деятельность в несфокусированном состоянии, направленная на обучение», а не просто «сеть пассивного режима работы мозга».

Существуют также тесные связи с более далекими зонами мозга, как мы увидим далее в аналогии с вниманием-осьминогом.

Рассеянное мышление может быть также связано с префронтальными участками, однако оно, вероятно, имеет больше общих связей и отфильтровывает меньше нерелевантных связей.

Психолог Норман Кук предположил, что «первый элемент центрального принципа человеческой психологии может быть определен как поток информации между: 1) правым и левым полушариями и 2) «доминантными» [левополушарными] и периферийными эффекторными механизмами, используемыми для вербального общения» (Cook 1989: 15). Однако также стоит отметить, что разница между полушариями часто становилась основой для бесчисленных необоснованных экстраполяций и неверных выводов (Efron 1990).

Согласно исследованиям занятости студентов (2012), учащиеся вузов, изучавшие инженерные специальности, проводили больше всего времени за занятиями: старшекурсники в среднем тратили на подготовку к занятиям 18 часов в неделю, старшекурсники педагогических специальностей — 15 часов, старшекурсники, изучающие общественные науки и бизнес, — около 14 часов. В статье, опубликованной в The New York Times под заголовком «Почему студенты-естественники меняют специальность (потому что сложно учиться)», преподаватель инженерных наук Дэвид Голдберг отмечает, что серьезные требования по математике, физике и химии могут привести к тому, что студенты будут выбывать из «гонки на выживание под знаменем математики и естественных наук» (Drew 2011).

Об эволюционных аспектах математического мышления см. в: Geary 2005, chap. 6.

Разумеется, многие абстрактные термины не связаны с математикой. Однако поразительное количество таких типов абстрактных идей относится к эмоциям. Мы можем не видеть эти термины, но чувствуем их или по меньшей мере их важные стороны.

Терренс Дикон, автор книги «Символический вид» (The Symbolic Species), отмечает неотъемлемую сложность проблемы кодирования/декодирования в математике:

«Вообразите, что вы впервые сталкиваетесь с новым видом математических понятий — например, рекурсивным вычитанием (т.е. делением). Когда детям преподают это абстрактное понятие, чаще всего их заставляют выучить набор правил обращения с действиями и числами. а потом эти правила снова и снова отрабатываются с разными числами в надежде, что такая практика поможет детям “увидеть” параллели с определенными физическими проявлениями. Мы часто описываем это как обучение математическим действиям путем механического заучивания (что в моих терминах называется индексальным обучением), а затем, когда действия уже могут совершаться почти бессознательно, мы надеемся, что дети осознают, как математика соотносится с процессами физического мира. На определенном этапе, если все идет как нужно, дети “понимают” общий абстрактный принцип, объединяющий эти связанные с символами и формулами операции. Так они могут реорганизовать то, что уже заучили механически, в соответствии с мнемоническими принципами более высокого уровня, касающимися комбинаторных возможностей и их абстрактной соотнесенности с манипулированием объектами. Такой шаг к абстракции для многих детей зачастую сложен. Однако вспомните, что та же трансформация на еще более высоком уровне абстракции требуется для понимания высшей математики. Дифференциалы связаны с рекурсивным делением, интегралы — с рекурсивным умножением, в каждом случае до бесконечности, т.е. до предельных величин (это возможно потому, что они зависят от сходящихся рядов, которые сами по себе плод умозаключений, а не прямого наблюдения). Эта способность видеть, что будет, если операцию повторять бесчисленное количество раз, и является ключевой для того, чтобы разрешить парадокс Зенона (который, кажется, невозможно осмыслить, когда он описан словами). Однако вдобавок к этой сложности используемый сейчас нами лейбницевский формализм сводит эту бесконечную рекурсию к одному символу (dx/dt) или знаку интеграла, поскольку никто не в состоянии писать такие операции бесконечно. Из-за этого манипулирование математическими символами еще больше теряет связь с соответствующими физическими величинами.

Поэтому смысл операции, выраженный математически, по сути содержит двойную кодировку. Да, у нас развиты мыслительные способности, позволяющие манипулировать с физическими объектами, и, разумеется, это сложно. Однако математика есть форма «кодирования», а не только воспроизведения, и декодирование является чрезвычайно трудным процессом именно из-за комбинаторных сложностей. Вот почему кодирование и шифрование осложняют восстановление и получение изначальной информации. По моему мнению, это является неотъемлемым свойством математики, независимо от развитых у нас способностей. Математика сложна по той же причине, по которой сложна расшифровка закодированного послания.

К моему удивлению, мы все знаем, что математические уравнения — это по сути зашифрованные послания, для расшифровки которых нужен ключ. Однако мы почему-то изумляемся, что высшая математика так сложна для преподавания, и часто виним систему образования или преподавателей. Мне кажется, что с тем же успехом можно обвинять всю эволюцию» (личная переписка с автором, 11 июля 2013 г.).

Bilalič et al. 2008.

Geary 2011. См. также документальный фильм «Частная вселенная» (A Private Universe) по адресу http://www.learner.org/resources/series28.html?pop=yes&pid=9, который обусловил дальнейшее изучение природы ошибочного понимания естественно-научных концепций.

Алан Шёнфилд (Alan Schoenfeld 1992) замечает, что более сотни имеющихся в его распоряжении видеороликов, на которых старшеклассники и студенты решают незнакомые задачи, свидетельствуют: примерно в 60% случаев решения основываются на подходе «прочти, быстро выбери способ и не отступайся от него ни под каким видом». Это характерный пример того, как работает сфокусированное мышление.

Голдакр, 2010.

Gerardi et al. 2013.

Различия между полушариями головного мозга могут быть важны, однако, как уже упоминалось, все утверждения в этой области нужно принимать с осторожностью. Лучше всего сказал об этом Норман Кук: «Многие идеи, высказанные в ходе дебатов 1970-х годов, ощутимо выходили за пределы фактических знаний: разницей между полушариями объяснялись сразу все загадки человеческой психологии, включая подсознание, природу творчества и парапсихологические феномены, — однако неизбежное отклонение маятника в обратную сторону было также чрезмерным» (Cook 2002: 9).

Demaree et al. 2005; Gainotti 2012.

McGilchrist 2010; Mihov et al. 2010.

Nielsen et al. 2013.

Другой вариант задачи см. у де Боно (де Боно, 2012) — это дало толчок к созданию приведенной здесь задачи. Классическая книга де Боно содержит огромное количество таких задач и может служить отличным чтением.

Immordino-Yang et al. 2012.

Я говорю о чередовании сфокусированного и рассеянного мышления, хотя аналогичный процесс происходит и при перемещении информации между полушариями мозга. Примерное представление о том, как информация переходит от одного полушария к другому и обратно, дают эксперименты над курами. Научиться не клевать горькие зерна — процесс сложной обработки следов памяти, передающихся от полушария к полушарию в течение нескольких часов (Güntürkün 2003).

Анке Баума отмечает: «Наблюдаемый шаблон латерализации не означает, что на всех стадиях, требуемых определенной задачей, превалирует одно и то же полушарие. Существуют указания на то, что [правое полушарие] может доминировать на одной стадии обработки информации, а [левое полушарие] — на другой стадии. То, какое полушарие окажется главным при решении конкретной задачи, определяется относительной сложностью конкретной стадии обработки информации» (Bouma 1990: 86).

Передвиньте монеты так, как показано на рисунке: видите ли вы теперь треугольник вершиной вниз?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*