KnigaRead.com/
KnigaRead.com » Разная литература » Прочее » Джон Кейжу - Открытия, которые изменили мир

Джон Кейжу - Открытия, которые изменили мир

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Джон Кейжу, "Открытия, которые изменили мир" бесплатно, без регистрации.
Перейти на страницу:

Это было поразительное явление (обычно у дрозофил глаза красные). Но еще больше Морган удивился, когда скрестил мужскую особь с белыми глазами и женскую с красными. Первые наблюдения были не слишком удивительными: как и ожидалось, в первом поколении все мушки имели красные глаза, а во втором проявилось знакомое соотношение 3 к 1 (три красноглазые мушки на одну белоглазую). Но полной неожиданностью для Моргана, перевернувшей всю основу его понимания наследственности, стала совершенно новая находка: все представители белоглазого потомства были мужского пола.

Этот новый поворот — идея о том, что определенная черта может наследоваться только одним полом — имел фундаментальное значение в связи с открытием, сделанным за несколько лет до этого. В 1905 г. американские биологи Нетти Мария Стивенс, которая первой принесла в лабораторию Томаса Моргана плодовых мушек, и Эдмунд Бичер Уилсон обнаружили, что пол человека определяется двумя хромосомами: X и Y. У представителей женского пола всегда были две X-хромосомы, а у представителей мужского пола — одна X и одна Y. Когда Морган увидел, что все белоглазые мушки мужского пола, он понял, что ген, отвечающий за белый цвет глаз, как-то должен быть связан с мужской хромосомой. Это заставило его совершить концептуальный скачок, которому он сопротивлялся годами. Он решил, что гены, скорее всего, являются частью хромосомы.

Вскоре после этого, в 1913 г., один из студентов Моргана, Альфред Стертевант, достиг переломного этапа, когда понял, что гены на самом деле могут быть размещены внутри хромосомы линейно. Затем, в результате бессонной ночи, Стертевант создал первую в мире генетическую карту — карту Х-хромосомы дрозофилы, поместив пять генов на линейную карту и рассчитав расстояние между ними.

В 1915 г. Морган и его ученики опубликовали знаковую для науки книгу «Механизмы менделевской наследственности», которая наконец официально провозгласила существующую связь. Два прежде отдельно существовавших мира (закон наследственности Менделя и хромосомы и гены внутри клеток) были теперь одним целым. Когда в 1933 г. Морган получил Нобелевскую премию по физиологии и медицине за свое открытие, ведущий отметил, что теория о том, будто гены расположены в хромосоме «как бисер на ожерелье», изначально казалась «фантастическим заявлением» и «была встречена с обоснованным скептицизмом». Но позже проведенные исследования доказали правоту Моргана, и его выводы были признаны «фундаментальными и определяющими для исследования и понимания наследственных болезней человечества».

Веха № 7

Преобразующая истина: вновь открытая ДНК и ее любопытные свойства

К концу 1920-х были раскрыты многие секреты, связанные с наследственностью. Передачу характеристик можно объяснить с помощью законов Менделя, законы связаны с генами, а гены — с хромосомами. Казалось бы, получившаяся теория охватывала все.

Ничего подобного. Наследственность оставалась загадкой в связи с двумя серьезными проблемами. Во-первых, большинство ученых считали, что гены состоят из белков, а не ДНК. Во-вторых, никто понятия не имел о том, как гены, чем бы они ни были, определяли наследственные признаки. Ответы на все эти загадки начали обнаруживаться в 1928 г., когда британский микробиолог Фредерик Гриффит работал над совсем другой проблемой — созданием вакцины от пневмонии. Это ему не удалось, но зато он с успехом обнаружил еще одну ключевую подсказку.

Гриффит занимался изучением Streptococcus pneumoniae, когда выяснил кое-что любопытное. Одна форма бактерий, вирулентный штамм S, образовывала гладкие колонии, а другая, безобидного штамма R, — неровные. Бактерии штамма S вызывали заболевание, так как имели полисахаридную капсулу, которая защищала их от действия иммунной системы. Бактерии штамма R оказались безвредными: не имея подобной капсулы, они распознавались и уничтожались иммунной системой. Затем Гриффит обнаружил кое-что еще более странное: если мышам вводился сначала безобидный штамм R, а затем вирулентный, но убитый нагреванием штамм S, то мыши все равно погибали. После нескольких экспериментов Гриффит понял, что прежде безвредные бактерии R каким-то образом «приобретали» у вирулентных бактерий типа S способность создавать защитную капсулу. Иными словами, несмотря на то что вирулентные бактерии S были убиты, что-то в них трансформировало безвредные R-пневмококки в болезнетворные S.

Что именно это было и как это было связано с наследственностью и генетикой? Гриффит так и не узнал об этом. В 1941 г., за несколько лет до раскрытия этой тайны, он погиб от немецкого снаряда во время бомбардировки Лондона.

***

Когда работа Гриффита, описывавшая «трансформацию» безвредных бактерий в вирулентную форму, была опубликована в 1928 г., Освальд Эвери, ученый из Института медицинских исследований Рокфеллера в Нью-Йорке, сначала отказался верить результатам. Да и почему, собственно, он должен был им верить? Эвери занимался изучением бактерий, описанных Гриффитом, последние 15 лет, включая защитную внешнюю капсулу, и замечание о том, что один тип мог «трансформироваться» в другой, бросал ему вызов. Но когда выводы Гриффита подтвердились, Эвери стал одним из его последователей, и к середине 1930-х он и его коллега Колин Маклауд показали, что данный эффект можно воссоздать в чашке Петри. Теперь оставалось выяснить, что именно было причиной трансформации. К 1940 г., когда Эвери и Маклауд приблизились к ответу, к ним присоединился третий исследователь, Маклин Маккарти. Но определение вещества было непростой задачей. В 1943 г., когда товарищи мучились в попытках рассортировать нагромождение в клетке белков, жиров, углеводов, нуклеинов и прочих веществ, Эвери пожаловался своему брату: «Попробуй отыскать активный элемент в этой сложной смеси! Та еще работка — сплошная душевная боль и разбитое сердце». Правда, при этом Эвери добавил интригу­ющую фразу: «Но, в конце концов, быть может, у нас получится».

И, конечно, у них все получилось. В феврале 1944 г. Эвери, Маклауд и Маккарти опубликовали работу, в которой говорилось, что ими определен «трансформирующий принцип» путем простого — впрочем, не такого уж простого — процесса устранения. Протестировав все, что можно было найти в этой сложной клеточной смеси, они выяснили: лишь одно вещество трансформировало R-пневмококки в S-форму. Это был нуклеин — то же вещество, которое впервые было определено Фридрихом Мишером и которое они теперь назвали дезоксирибонуклеиновой кислотой, или ДНК. Сегодня этот классический труд считают первой научной работой, представившей доказательство того, что именно ДНК — та самая молекула, отвечающая за наследственность. «Кто бы мог подумать?» — писал Эвери брату.

На самом деле мало кто мог об этом подумать или даже поверить в это. Уж слишком это противоречило здравому смыслу. Как могла ДНК — которую многие ученые считали «глупой» молекулой, с химической точки зрения «скучной» по сравнению с белками — отвечать за, казалось бы, бесконечное многообразие наследственных характеристик? Но другие были заинтригованы. Возможно, более пристальный взгляд на ДНК дал бы ответ на тот самый давний вопрос: как именно работает механизм наследственности?

Одна возможная догадка, раскрывающая эту тайну, была найдена за несколько лет до этого, в 1940 г., когда американские генетики Джордж Бидл и Эдуард Тейтем представили теорию «Один ген — один белок», в соответствии с которой гены не только состояли из белков, но, возможно, и создавали их. Их исследование подтвердило то, что 40 годами ранее продемонстрировал Арчибальд Гаррод в своих трудах о «черной моче», предположив, что генами создаются ферменты (особый тип белка).

Но, пожалуй, самая интригующая находка была обнаружена в 1950-х гг. К этому времени ученые уже несколько лет знали о том, что ДНК имеет в своем составе четыре «строительных» соединения, которые называются азотистыми основаниями: аденин, тимин, гуанин и цитозин. Постоянное наличие этих молекул в ДНК и было основной причиной того, что ученые считали ее слишком «глупой», чтобы играть какую-либо роль в наследственности. Однако когда в 1944 г. была опубликована работа Эвери, Маклауда и Маккарти, Эрвин Чаргафф, биохимик из Колумбийского университета, увидел «начало биологической грамматики… текст на новом языке, или, скорее… знак того, где его искать». Не побоявшись взяться за эту загадочную «книгу», он вспоминал: «Я решил заняться поиском этого текста».

К 1951 г., применив лучшие навыки лабораторной работы к анализу компонентов ДНК, Чаргафф обнаружил кое-что необычное. Хотя у разных организмов названные четыре основания присутствовали в разных количествах, все живые существа обладали одной общей чертой. Количество аденина (A) и тимина (T) в их ДНК всегда было одинаковым, как и количество цитозина (Ц) и гуанина (Г). Смысл этого любопытного соотношения — один к одному (АТ и ЦГ) — был неясен, хотя и значим с одной очень важной точки зрения. Эта пропорция освобождала ДНК от старой «тетрануклеотидной гипотезы», которая утверждала, что все четыре основания монотонно повторялись, без вариаций, во всех существу­ющих видах. Открытие парного принципа означало более высокий творческий потенциал. Может, ДНК не так уж и глупа? И хотя Чаргафф не осознавал значимости своих исследований, они привели его к следующему важному этапу: открытию того, что представляла собой наследственность — и как она работала.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*