KnigaRead.com/
KnigaRead.com » Разная литература » Прочее » Галина Железняк - Параллельные миры

Галина Железняк - Параллельные миры

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Галина Железняк, "Параллельные миры" бесплатно, без регистрации.
Перейти на страницу:

Похожим образом ведет себя разорвавшийся на две части снаряд: если до взрыва он был неподвижен, суммарный импульс его осколков равен нулю. «Поймав» один осколок и измерив его импульс, можно мгновенно назвать величину импульса второго осколка, как бы далеко он ни улетел.

Казалось бы, нарушается принцип причинности — следствие и причина не разделены временем, если понимать время как способ организации последовательности событий. Поэтому Эйнштейн и соавторы оценивали свою чисто теоретическую модель как неприложимую к практике, эксперименту. Это противоречие теории и видимой физической реальности длилось около 30 лет, хотя Н. Бор и многие другие физики полагали, что никакой проблемы здесь вообще нет.

Действительно, в рамках классического подхода, после того как система распалась на составные части, никакое воздействие на одну из частей не может изменить состояние другой части, если частицы не взаимодействуют. И более того, поскольку скорость распространения сигнала не может превышать скорости света, то при определенных условиях — в рамках классического подхода — воздействие на одну часть системы никоим образом не может повлиять на другую часть системы.

В математическом виде это утверждение было сформулировано Дж. Беллом в 1964 году в виде так называемых неравенств Белла, нарушение которых означает невозможность описать систему классическим образом и свидетельствует в пользу вероятностной трактовки квантовой механики.

Вопрос о квантовой телепортации впервые был поставлен в 1993 году группой Ч. Беннета, которая, используя парадокс ЭПР, показала, что в принципе сцепленные частицы могут служить своего рода транспортом. Посредством присоединения третьей — информационной — частицы к одной из сцепленных частиц можно передавать ее свойства другой, причем даже без измерения этих свойств.

Экспериментальная реализация ЭПР-канала была осуществлена работами двух групп ученых — австрийскими исследователями из университета в Инсбруке, возглавляемыми Антоном Цойлингером, и итальянскими, из университета «La Sapienza» в Риме, под руководством Франческо Де Мартини. Опыты групп Цогшингера и Де Мартини доказали выполнимость принципов ЭПР на практике для передачи через световоды состояний поляризации между двумя фотонами посредством третьего на расстояниях до 10 километров.

ФАНТАСТИЧЕСКИЙ ЭКСПЕРИМЕНТ

В эксперименте неполяризованный свет, проходящий через кристалл, расщепляется на два поляризованных во взаимно перпендикулярном направлении луча. В оптическом смесителе фотон взаимодействовал с одним из пары связанных фотонов. Между ними, в свою очередь, возникала квантово-механическая связь, приводящая к поляризации новой пары.

Согласно законам квантовой механики, фотон не имеет точного значения поляризации, пока она не измерена детектором. Таким образом, измерение преобразует набор всех возможных поляризаций фотона в случайное, но совершенно конкретное значение. Измерение поляризации одного фотона связанной пары приводит к тому, что у второго фотона, как бы далеко он ни находился, мгновенно появляется соответствующая — перпендикулярная ей — поляризация.

Если к одному из двух исходных фотонов «подмешать» посторонний фотон, образуется новая пара, новая связанная квантовая система. Измерив ее параметры, можно мгновенно передать сколь угодно далеко — телепортировать — направление поляризации уже не исходного, а постороннего фотона. В принципе, практически все, что происходит с одним фотоном пары, должно мгновенно влиять на другой, меняя его свойства вполне определенным образом. Однако на практике такая связь достаточно чувствительна к внешним воздействиям, поэтому необходимо изолировать частицы от внешних влияний.

В результате измерения второй фотон первоначальной связанной пары также приобретал некоторую фиксированную поляризацию: копия первоначального состояния фотона-посланника передавалась удаленному фотону. Наиболее сложно было доказать, что квантовое состояние действительно телепортировано: для этого следовало точно определить, как установлены детекторы при измерении общей поляризации, и тщательно синхронизовать их.

Достигнув успехов в телепортации фотонов, экспериментаторы уже планируют работы с другими частицами — электронами, атомами и даже ионами. Это позволит передавать квантовое состояние от короткоживущей частицы к более стабильной. Таким способом можно будет создавать запоминающие устройства, где информация, принесенная фотонами, хранилась бы на ионах, изолированных от окружающей среды.

После разработки надежных методов квантовой телепортации возникнут реальные предпосылки для создания квантовых вычислительных систем.

Есть ли польза от телепортации?

Телепортация обеспечит надежную передачу и хранение информации на фоне мощных помех, когда все другие способы оказываются неэффективными, и может быть использована для связи между несколькими квантовыми компьютерами. Кроме того, и сами разработанные исследователями методы имеют огромное значение для будущих экспериментов по квантовой механике, для проверки и уточнения целого ряда современных физических теорий.

В различных странах обсуждаются программы по применению эффекта квантовой телепортации для создания квантовых оптических компьютеров, где носителями информации будут фотоны. Первые электронные компьютеры потребляли десятки киловатт энергии. Скорость работы квантовых компьютеров и объемы информации будут на десятки порядков превосходить таковые у существующих компьютеров.

В будущем сети квантовой телепортации получат такое же распространение, как современные телекоммуникационные сети. Кстати, квантовые вирусы будут гораздо опаснее нынешних сетевых, так как после своей телепортации они смогут существовать вне компьютера. Квантовые компьютеры будут реализовывать холодные вычисления, работая практически без затрат энергии.

Можно ли узнать все?

К настоящему времени квантовая информатика обрела все признаки точной науки, включая систему определений, постулатов и строгих теорем. К числу последних относится, в частности, теорема о невозможности клонирования кубита (no-cloning theorem), строго доказанная с применением теории унитарного оператора квантовой эволюции. Это значит, что невозможно, получив полную информацию о квантовом объекте А (изначально его состояние не известно), создать второй, точно такой же объект, не разрушив первый.

Дело в том, что создание двух кубитов, абсолютно копирующих друг друга, приводит к противоречию, которое можно было бы назвать парадоксом квантовых близнецов. Однако и без того ясно, что создание двух электронов в одном и том же квантовом состоянии невозможно в силу ограничения, накладываемого принципом Паули.

Парадокс близнецов не возникает, если при клонировании снабжать копии отличительными признаками: пространственно-временными, фазовыми и др. Тогда генерацию лазерного излучения можно понимать как процесс клонирования фотона-затравки, попавшего в среду с оптическим усилением. Если же к квантовому копированию подходить строго, то рождение клона должно сопровождаться уничтожением прототипа. А это и есть телепортация.

Согласно принципу неопределенности, чем больше получено информации о некоем объекте, тем больше искажений вносится в этот объект. И так до тех пор, пока исходное состояние объекта не будет нарушено полностью, но в то же время точная копия все-таки не получится. Это звучит как весомое возражение против телепортации: если для создания точной копии из объекта невозможно извлечь достаточно информации, то похоже, что точная копия не может быть создана.

Единственный способ — извлечь часть информации, необходимой для передачи от объекта А объекту С, который никогда не был в контакте с объектом А. Затем, обрабатывая объект С в зависимости от полученной информации, возможно привести его точно в то состояние, в каком находился объект А до того, как из него была извлечена информация. Сам объект А уже не находится в прежнем состоянии, поскольку вследствие извлечения из него информации его состояние было нарушено. Так что в результате происходит не дупликация, а телепортация.

Итак, оставшаяся часть информации передается от А к С через опосредующий объект В, который взаимодействует сначала с С, а потом с А. Правильно ли говорить «сначала с С, а потом с А»? Безусловно, для того чтобы передать нечто от А к С, носитель должен сначала контактировать с А и только потом с С, а не наоборот.

Однако существует некая удивительная, несчиты-ваемая часть информации, которая — в этом ее отличие от любого материального объекта и даже от обычной информации — ив самом деле может быть отправлена таким «обратным» путем.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*