KnigaRead.com/
KnigaRead.com » Разная литература » Прочее » Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "1. Современная наука о природе, законы механики" бесплатно, без регистрации.
Перейти на страницу:

Фиг. 7.4. Ускорение к центру на круговом пути.

Из планиметрии x/s = (2R -s)/x » 2R/x, где R — радиус Земли (6370 км); х — расстояние, «пройденное горизонтально» за 1 сек; s — длина пути «паде­ния» за 1 сек (4,9 м).

Остается вспомнить одну из занятных геометри­ческих теорем о том, что длина полухорды, перпендикулярной диаметру, равна среднему геометрическому между длинами от­резков диаметра. Значит, расстояние, пройденное пулей, есть среднее пропорциональное между 4,9 м падения и 12 740 км диаметра Земли, т. е.

Ц(0,0,049·12740)»7,9 км.

Итак, если пуля движется с быстротой 7,9 км/сек, она будет по-прежнему падать каждую секунду на 4,9 м, но никогда не приб­лизится к поверхности, уходящей от нее вследствие своей кри­визны. Так было и с космонавтом Гагариным, который держался на одной высоте, делая примерно 8 км в секунду, т. е. 40 000 км за оборот (на самом деле чуть побольше, так как и летел он повыше).

Любое открытие нового закона полезно лишь тогда, когда из него можно извлечь больше того, что в него было вложено. Ньютон применил второй и третий законы Кеплера для того, чтобы вывести закон тяготения. Что же он предсказал? Первым предсказанием был его анализ движения Луны: движение это увязывалось с падением тел на Земле. Вторым был ответ на вопрос, являются ли орбиты эллипсами. Можно точно рассчи­тать движение, можно доказать и то, что это эллипс; стало быть, никаких добавочных фактов для доказательства первого закона Кеплера не нужно. Так Ньютон сделал свое первое мощ­ное предсказание.

Закон тяготения объяснил многие явления, прежде непо­нятные. Например, притяжение Луны вызывает на Земле приливы — явление дотоле таинственное. Люди и раньше догадывались, что Луна притягивает воду под собой и получается прилив, но они не были так умны, как Ньютон, и думали, что должен быть только один прилив в сутки. Считалось, что Луна притягивает воду, вызывая прилив, но так как Земля вращается, то в каждом месте вода должна раз в сутки подняться и опус­титься. А на самом деле прилив бывает каждые 12 часов. Была и другая школа передовой мысли; по ее мнению, прилив должен быть и на противоположной стороне Земли, потому что Луна всегда отрывает сушу от воды! Обе эти теории неверны. Настоя­щее объяснение примерно таково: притяжение Луной суши и воды «уравновешено» в центре. Но притяжение Луной тех масс воды, которые находятся на «лунной» стороне Земли, силь­нее, чем среднее притяжение всей Земли, а притяжение масс воды на обратной стороне Земли слабее среднего. Кроме того, вода в отличие от суши может течь. Истинная причина прили­вов и определяется этими двумя факторами.

Что мы понимаем под словом «уравновешено»? Что именно уравновешивается? А вот что. Если Луна притягивает к себе всю Землю, то почему Земля не падает «вверх» на Луну? По той же причине, почему и Луна не падает на Землю: Земля вращается вокруг точки, которая находится внутри Земли (но не в ее цент­ре). Не Луна вращается вокруг Земли, а обе они вращаются вокруг общего центра и обе падают на него, как показано на фиг. 7.5.

Фиг. 7.5. Система Земля—Луна с приливами.

Это движение вокруг общего центра и уравновешивает падение каждого из двух небесных тел. Так что и Земля тоже движется не по прямой линии, а по круговой орбите. Массы во­ды на дальней стороне отбрасываются из-за «центробежной си­лы» сильнее, чем центр Земли, который как раз уравновешен притяжением Луны. Притяжение Луны на дальней стороне слабее и «центробежная сила» больше. В итоге равновесие воды нарушается: она удаляется от центра Земли. На ближней сто­роне Луна притягивает сильнее, но из-за меньшей величины ра­диус-вектора оказывается меньше и «центробежная сила», рав­новесие нарушается в обратную сторону, но по-прежнему от цен­тра Земли. В итоге появляются два приливных «горба».

$ 5. Всемирное тяготение

Что же еще можно понять, зная о существовании тяготения? Всем известно, что Земля круглая. А почему? Ну, это понятно: конечно, благодаря тяготению. Земля круглая просто потому, что между всеми телами существует притяжение, и все, из чего возникла Земля, тоже взаимно притягивалось до тех пор, пока было куда притягиваться! Точнее говоря, Земля не совсем шар; она ведь вращается, и центробежная сила на экваторе проти­водействует тяготению. Выходит, что Земля должна быть эл­липсоидом, и можно даже получить правильную его форму. Итак, из закона тяготения следует, что и Солнце, и Луна, и Зем­ля должны быть (приблизительно) шарами.

Что же еще следует из закона тяготения? Наблюдая за спутниками Юпитера, можно понять все законы их движения вокруг планеты. В этой связи стоит рассказать об одной замин­ке, которая вышла у закона тяготения с лунами Юпитера. Эти спутники очень подробно изучались Рёмером, и вот он за­метил, что временами они нарушают расписание: то опаздыва­ют, то приходят в назначенное место раньше времени (распи­сание можно составить, понаблюдав за ними достаточно долго и подсчитав по многим оборотам средний период обращения). Более того, он заметил, что опоздания случаются, когда Юпи­тер удален от Земли, а когда мы от Юпитера близко, то движение лун опережает расписание. Такую вещь очень трудно было уложить в закон тяготения, и ему бы угрожала безвременная кон­чина, не найдись другого объяснения. Ведь если закону проти­воречит хотя бы один случай, то закон неверен. Но причина рас­хождения оказалась очень естественной и красивой: дело прос­то в том, что необходимо какое-то время, чтобы увидеть луну на нужном месте, ведь свет от нее до нас доходит не мгновенно. Время это небольшое, когда Юпитер находится близко к Зем­ле, но оно затягивается, когда Юпитер удалится от нее. Вот почему кажется, что луны в среднем торопятся или отстают в за­висимости от того, близко ли или далеко они находятся от Зем­ли. Это явление доказало, что свет распространяется не мгно­венно, и снабдило нас первой оценкой его скорости (было это в 1676 г.).

Если все планеты притягиваются друг к другу, то сила, уп­равляющая, скажем, обращением Юпитера вокруг Солнца, это не совсем сила притяжения к Солнцу; ведь есть еще и притяже­ние, например, Сатурна. Оно невелико (Солнце куда больше Сатурна), но оно есть, и потому орбита Юпитера не может быть точным эллипсом; она чуть колеблется относительно эллипти­ческой траектории, так что движение несколько усложняется. Были предприняты попытки проанализировать движение Юпи­тера, Сатурна и Урана на основе закона тяготения. Чтобы узнать, удастся ли мелкие отклонения и неправильности в дви­жении планет полностью объяснить только на основе одного этого закона, рассчитали влияние каждой из них на остальные. Для Юпитера и Сатурна все сошло как следует, но Уран — что за чудеса! —повел себя очень странно. Он двигался не по точ­ному эллипсу, чего, впрочем, и следовало ожидать из-за влияния притяжения Юпитера и Сатурна. Но и с учетом их притяжения движение Урана все равно было неправильным; таким образом, законы тяготения оказались в опасности (возможность эту нельзя было исключить). Двое ученых, Адаме и Леверрье в Англии и Франции, независимо задумались об иной возможности: нет ли там еще одной планеты, тусклой и невидимой, пока еще не от­крытой. Эта планета, назовем ее N, могла притягивать Уран. Они рассчитали, где эта планета должна находиться, чтобы

причинить наблюдаемые возмущения пути Урана. В соответст­вующие обсерватории они разослали письма, в которых говори­лось: «Господа, направьте свои телескопы в такое-то место — и вы увидите там новую планету». Обратят ли на вас внимание или нет, часто зависит от того, с кем вы работаете. На Леверрье об­ратили внимание, послушались его и обнаружили планету N! Тогда и другая обсерватория поспешила начать наблюдения — и дело увенчалось успехом.

Это открытие показывает, что в солнечной системе законы Ньютона абсолютно верны. Но верны ли они на расстояниях, больших, чем относительно малые расстояния до планет? Во-первых, можно поставить вопрос: притягивают ли звезды друг друга так же, как планеты? Положительные доказательства этого мы находим в двойных звездах. На фиг. 7.6 показана двой­ная звезда — две близкие звезды (третья звезда нужна, чтобы убедиться, что фотография не перевернута); вторая фотография сделана через несколько лет.

Фиг. 7.6. Система двойной звезды.

Сравнивая с «фиксированной» звез­дой, мы видим, что ось пары повернулась, т. е. звезды ходят одна вокруг другой. Вращаются ли они в согласии с законами Ньютона? Тщательные замеры относительной позиции двойной звезды Сириус даны на фиг. 7.7.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*