Журнал «Юный техник» - Юный техник, 2012 № 10
Схема детектора ATLAS, с помощью которого был детектирован бозон Хиггса.
Один из участников этой работы, наш соотечественник Дмитрий Денисов, сказал так: «Мы на Тэватроне знаем, как открывать частицы. Мы открыли топ-кварк, шесть новых барионов (частиц, состоящих из новых комбинаций кварков. — Ред.), процесс самых быстрых переходов между материей и антиматерией и много других новых процессов. То, что мы видим в наших данных по Хиггсу, указывает на то, что бозон Хиггса существует»…
Денисов также добавил, что большой вклад в этот результат внесли и российские ученые — в одном из экспериментов было задействовано 100 представителей Объединенного института ядерных исследований (ОИЯИ) в Дубне, Института физики высоких энергий (ИФВЭ) в Протвино, МГУ имени Ломоносова, Института теоретической и экспериментальной физики (ИТЭФ) и Петербургского института ядерной физики имени Константинова (ПИЯФ).
Все эти работы помогли европейским физикам настроить Большой адронный коллайдер — ускоритель элементарных частиц с окружностью тоннеля в 26,7 км, который залегает под землей на глубине от 50 до 175 м на границе Швейцарии и Франции.
Продолжение следует
И вот спустя 12 лет после начала работы над БАКом появились первые значительные результаты. Сразу две группы ученых, работающих на детекторах «CMS» и «Atlas» в конце 2011 года, заявляли о нахождении неких, похожих на бозон Хигса частиц. Всего таких частиц было обнаружено около 300. Но ученые полагали, что этого мало, чтобы уверенно заявить: «Охота закончена. Мы поймали то, что хотели!»
Для полной уверенности ученым необходимо было добиться степени достоверности результатов в 99,99995 процента (или 5 «сигма», что соответствует статусу научного открытия). И эксперименты были продолжены.
«Мы достигли уровня вероятности почти в 5 «сигма», — сказал 4 июля 2012 года на семинаре представитель эксперимента «CMS» Джо Инкандела.
Итак, бозон Хиггс существует. Пока исследователи знают о нем не очень много, в частности только то, что его вес составляет в среднем 125 гигаэлектронвольт (эксперимент «Atlas» дал результат 126,5 ГэВ, a «CMS» — 125,З ГэВ). Теперь им предстоит большая работа по перепроверке полученных результатов, уточнению «портрета» частицы, описанию ee свойств.
Кроме того, во Вселенной осталось еще немало загадок. Например, науке пока неизвестно, почему наш мир в основном состоит из вещества, а антивещества ничтожно мало? Почему то, что мы видим вокруг, как показывают опять-так и теоретические расчеты, — всего лишь 4 процента от существующей материи во Вселенной? Остальное приходится на «темную материю» и «темную энергию», но что это такое, как обнаружить это «неизвестно что» экспериментально, физики пока не знают. Так что продолжение еще обязательно последует.
Г. МАЛЬЦЕВ, научный обозреватель «ЮТ»
КОЛЛЕКЦИЯ ЭРУДИТА
«Забор» для землетрясения
Доктор Уильям Парнелл из университета Манчестера разрабатывает теорию, которая позволит защитить здания от землетрясений, сообщает журнал Proceedings of the Royal Society. Ученый математически доказал, как можно заставить сейсмические волны обходить охраняемые объекты стороной. Для этого нужно зарыть в землю по периметру сооружения специальные щиты из отражающих волны материалов.
В своем выступлении на слушаниях Королевского общества (Британской академии наук. — Ред.) Парнелл так описал принцип действия такой системы. «Ее основу составляют особые нелинейные неогуковские эластомерные материалы, — сообщил ученый. — Они отличаются от обычных нелинейной зависимостью между механическим напряжением и деформацией, то есть под нагрузкой не происходит разрыв материала, поскольку резиновые элементы сильно спрессованы».
Говоря проще, барьер из полимеров выполняет роль своеобразного волнолома, защищающего причал от морского шторма.
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Сила капель
О том, что вода — жидкость, на редкость странная, известно давно. Судя по структуре и составу молекул, она даже жидкой быть не должна, поскольку состоит из двух газов. Исследованию капель воды были посвящены недавние работы ученых.
И вот к каким открытиям они пришли…
Началось все с того, что несколько лет тому назад профессор Осман Базеран из Университета Пардью, штат Индиана, США, вдруг заинтересовался каплями, падавшими из неисправного крана.
Оказалось, что интервалы между каплями меняются, причем никто не в состоянии предсказать, когда именно упадет следующая капля.
«А теперь мы можем предсказать поведение сотен падающих друг за дружкой капель, — с гордостью заявил профессор, потративший немало времени на исследования. — Ранее же поведение воды можно было рассчитать, только когда ее струя ограничена какими-то «рамками»: например, когда она бежит по трубе. И нам пришлось проделать тысячи экспериментов, чтобы понять, по каким законам капли воды стекают из крана, что определяет их ритм…»
В своей работе Осман Базеран оттолкнулся от наблюдения, которое сделал Джен Эггер из Чикагского университета: капля, зависшая на кончике крана, как бы связана тонкой нитью со следующей. Но вот капля падает, нить рвется и скрывается внутри крана. Это навело Эггера на следующую идею: он сравнил каплю воды с грузом, подвешенным на резинке. Если вес груза увеличивается, как и вес капли, то резинка истончается, растягиваясь, и в конце концов разорвется, а конец ее подпрыгнет вверх. Этот процесс уже можно рассчитать. Эггер описал поведение растягиваемой резинки с помощью уравнения. Оказалось, что результаты, полученные Эггером, довольно точно отражают поведение капель воды.
Базеран усовершенствовал модель Эггера, описав еще и то, что происходит внутри самой капли. Ученый словно бы разъял ее на множество частей, чтобы понять, как отдельные группы молекул перемещаются внутри. При этом он сумел выяснить, что происходит после того, как водяная нить разорвется.
Компьютерная модель показала: как только капля срывается вниз, то нить, на которой она висела, сперва сама скручивается в крохотную капельку-сателлит. С ее поверхности тут же срываются мельчайшие частички воды — субсателлиты; они всплывают из глубины этой капельки, как мяч из воды (см. рис).
Оказалось, что эти исследования весьма полезны на практике. Так, именно из-за появления капель-субсателлитов многие струйные принтеры оставляют не совсем четкий оттиск. Теперь, зная, что за микроскопические процессы протекают внутри каждой капли, можно изготовить струйный принтер, работающий так же четко, как лазерный.
Следующий шаг сделали европейские коллеги американского профессора. При анализе работы того же струйного принтера им удалось обнаружить ранее неизвестный феномен. В момент столкновения водяной капли с бумагой или иной твердой гидрофобной поверхностью от капли отделяется тончайшая струйка. Причем скорость ее в 40 раз превосходит скорость падения самой капли!
Это наблюдение Денис Бартоло из французской Ecole Normal Superieure и его коллеги из Нидерландов зафиксировали на видео и рассчитали, что при начальной скорости капли, равной 50 см в секунду, скорость отделяющейся от нее тонкой струйки равна 20 м в секунду.
Однако если увеличить скорость капли, сделав ее больше 70 см в секунду, этот эффект исчезает. Почему?
Исследователи предположили, что микроскопический поток воды возникает от столкновения друг с другом и «взрыва» заключенных в капле пузырьков воздуха, когда капля деформируется в результате удара о поверхность. А при увеличении скорости падения капли пузырькам воздуха в капле удержаться уже не удается, и «взрывов» уже не происходит.
Полученные результаты важны для понимания практически всех процессов, при которых происходит столкновение капель с поверхностью. Речь идет и о струйной печати, и о капельном орошении, а также об опрыскивании пестицидами в агрономии и применении аэрозолей в современном изобразительном искусстве.
Теперь давайте отправимся к химикам Принстонского университета, которые разработали новую технологию для быстрой печати удивительно тонких линий, позволяющую печатать линии в десять раз тоньше и на несколько порядков быстрее, чем обычно, что должно дать толчок развитию гибкой электроники и произвести революцию в технологии производства дисплеев.
В основе метода лежит известная технология получения электродинамических струй, при которой жидкость из сопла вытягивает сильное электрическое поле.
Особенность таких струй — их неустойчивость, из-за которой струя либо быстро разбивается на мелкие капельки, либо начинает извиваться, словно змея. Эти неустойчивости давно используют в различных технологических процессах. Например, режим «извивающейся змеи» используется, чтобы свивать волокна при плетении нитей. А режим мелких капель — для нанесения на поверхность ровного слоя краски.