KnigaRead.com/
KnigaRead.com » Разная литература » Периодические издания » Журнал «Юный техник» - Юный техник, 2013 № 01

Журнал «Юный техник» - Юный техник, 2013 № 01

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Журнал «Юный техник», "Юный техник, 2013 № 01" бесплатно, без регистрации.
Перейти на страницу:

ВЕСТИ ИЗ ЛАБОРАТОРИЙ. Полировать не обязательно

Слова «красота» и «краска» имеют один и тот же корень. Однако современные краски, особенно те, к которым можно добавить приставку «нано», оказывается, способны не только навести красоту.



Что такое ЛПД?

На первый взгляд понятие «нанокраска», как и «наножидкость», кажется абсурдным. Ведь известно, что жидкости имеют молекулярную природу, а размер молекул редко превышает 1 нм. Но в действительности, когда ученые рассуждают о наножидкостях, а тем более о нанопокрытиях, то речь, как правило, идет о неких «ультрадисперсных системах с жидкой дисперсионной средой».

В переводе на наш обыденный язык это означает вот что. Если в одной жидкости «растворены» капли другой, то, в зависимости от размера капель, она носит название микро- или наноэмульсии, если же в ней равномерно распределены твердые наночастицы, то такую систему называют золем или коллоидным раствором наночастиц.

Ежедневно мы сталкиваемся со многими примерами наножидкостей. Возьмем хотя бы самый обычный чай или кофе, который вы, наверное, пьете по утрам. Если в чашку чая посветить лазерной указкой, то можно увидеть, как через объем жидкости проходит лазерный луч. Согласно эффекту Тиндаля в чае происходит рассеивание лазерного луча на частицах, содержащихся в растворе. В чашке с отфильтрованной чистой водой подобный эффект вы наблюдать не сможете.

Дело в том, что чай — это один из коллоидных растворов, которые содержат взвешенные в объеме растворителя твердые наночастицы, в общем случае, размером от 1 до 100 нм, на которых и происходит рассеяние луча лазера. Потому-то его и хорошо видно.

Так вот, к нанокраскам относят смеси, где в летучей, испаряющейся жидкости содержатся наночастицы с различными, порой весьма неожиданными свойствами. Так, например, в подмосковном Жуковском, где расположен ЦАГИ — Центральный гидродинамический институт, — были созданы краски, которые весьма облегчают испытания моделей самолетов в аэродинамических трубах.

Такие краски называются ЛПД — люминесцентные преобразователи давления, — рассказал начальник отдела новых авиационных технологий, кандидат технических наук Леонид Теперин. — Такая краска позволяет видеть значение давления на поверхности, поскольку она изменяет свой цвет под действием воздушной струи.

Этот способ сейчас запатентован и широко используется практически во всех авиационных центрах мира.

Суть же изобретения такова. Особые крупинки, которые на Западе называют сумной пылью», добавляют в краску, которой красят как модели, так и самые настоящие самолеты. И в каждом испытании, в каждом полете эти крупинки в зависимости от воздушного давления, температуры, деформации той или иной части конструкции выдают электромагнитные сигналы, которые фиксирует аппаратура. Таким образом, сразу можно получать огромное количество информации, в том числе и такой, что не может быть получена иным способом.


По примеру акулы

Еще одну разновидность нанокраски придумали германские изобретатели из города Бремена. Они создали краску, которая, по их мнению, позволяет серьезно сократить расход авиационного топлива. Пользу от этой краски можно получить и если наносить ее на морские суда, а также на ветрогенераторы.

Идея пришла к немецким исследователям, когда они наблюдали за тем, как быстро плавают акулы. Дело в том, что шершавая кожа акулы покрыта мельчайшими пластинками, которые улучшают обтекание и уменьшают ее коэффициент сопротивления.

Сам этот факт, конечно, не новость. Несколько лет назад военно-морской флот США заказал разработку покрытия для судов, оценив свойства акульей кожи.

Военные хотели улучшить ход кораблей и повысить их: маневренность.

Краска, которую предъявили миру немецкие ученые, содержит наночастицы. Общий принцип изобретения: можно понять, представив себе, например, поверхность, листа лотоса, испещренного микрошероховатостями, по которым без задержек стекает вода. Наночастицы в краске не только уменьшают сопротивление любого покрытого ею объекта воздушному потоку и гидрофобность (неспособность материала к смачиванию водой), но и противостоят ультрафиолетовой радиации.

При этом новая краска переносит перепады температур от -55 до +70 градусов Цельсия. Она безвредна для окружающей среды, не делает самолет тяжелее. Если: такой краской покрасить все самолеты в мире, то благодаря снижению аэродинамической сопротивляемости в год, по подсчетам ученых, будет сэкономлено около 4,48 млн. т топлива. А в случае если краску нанесут на суда, то каждый большой контейнеровоз в год израсходует на 2 тыс. т топлива меньше.



Термолюминесцентные краски наглядно демонстрируют распределение давлений на крыле самолета.


При помощи взрыва

Наши изобретатели ответили на разработки зарубежных исследователей созданием еще более уникального покрытия.

«Ныне в ЦАГИ разработана краска, которая может сделать летательный аппарат практически невидимым для радара, — сказал Леонид Теперин. — До сих пор малую радиозаметность летательным аппаратам пытались придать с помощью экзотических форм, которые снижают управляемость и летные качества аппарата.

Другой путь решения проблемы — создание многослойных покрытий, которые имеют определенную наноначинку, эффективно поглощающую излучение радара…»

Причем делается такое покрытие довольно экзотическим способом. ЦАГИ имеет много разных установок, на которых можно моделировать всевозможные процессы.

И вот на одном из стендов отработан метод генерации синтеза нанодисперсного углерода с помощью детонатационных волн.

Выглядит это примерно так. В трубу помещают углеродный порошок и подрывают заряд взрывчатки. При этом возникает ударная волна сжатия, при которой по трубе распространяются большие давления и температуры. В этих условиях и происходит превращение обычного углеродного порошка в наночастицы.

Вообще-то способ изготовления наночастиц с помощью ударной волны был известен и раньше. Но при этом в трубах происходило переотражение волн и много энергии расходовалось впустую, качество нанопорошка ухудшалось. Наши же специалисты создали установку, которая работает намного эффективнее.

Полученный наноуглерод и добавляют в краску, улучшающую обтекание самолетов и делающую их малозаметными для радаров.

В. ВЛАДИМИРОВ, С. СЕРГЕЕВ

НОВЫЕ ТЕХНОЛОГИИ. «Как напечатать» дом?



Когда-то знаменитый скульптор Микеланджело на вопрос, как он создает свои скульптуры, ответил, что просто отсекает лишнее от глыбы мрамора.

Подобным образом действуют ныне и многие технологи. Они предлагают токарю или слесарю срезать с заготовки лишние слои металла и получить таким образом нужную деталь. Но природа ведь работает куда рациональнее. Она просто выращивает из атомов и молекул нужные органы, а затем и организмы. Ныне такой способ производства стараются освоить и технологи.


Началось все с того, что технологи начали изготовлять трехмерные эталоны для изготовления литьевых форм из специального пластика, твердеющего под воздействием света. Зальют такой пластик в некий сосуд с прозрачными стенками, и лазер, управляемый компьютером, слой за слоем отверждает пластмассу, получая какое-то изделие.

Со временем подобные системы стали быстро расти, с их помощью стали изготовлять предметы и объекты все больших размеров. Так, робот-манипулятор Stone Spray специально создавали как своеобразный трехмерный принтер, способный выращивать скульптуры и архитектурные элементы из почвы и песка. Его разработчики: Анна Кулик, Индер Шерджилл и Петр Новиков, хотели создать эффективную систему, способную изготавливать экологически чистые строения из подручных материалов, которые можно взять прямо на месте строительства. Технология работы Stone Spray весьма проста: по одной трубке в необходимую точку пространства подается сыпучий материал, а по второй — связывающий состав, в роли которого может выступить даже обычная вода. В результате работы этого принтера получаются формы, похожие на песчаные скульптуры, которые делают дети из песка на берегу водоема. Причем, если добавить в воду клей или цемент, то изделия получаются несравнимо прочнее детских поделок из песочницы.

Вообще-то такой процесс ближе к отливке. Но его чаще называют «печатанием». Быть может, потому, что движениями манипулятора управляет компьютер с соответствующим программным обеспечением, используемым в ЗD-печати. Это позволяет проектировщикам оперативно вмешиваться в работу устройства Stone Spray, изменять некоторые элементы «печатаемого» объекта прямо в ходе его производства.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*