Журнал «Юный техник» - Юный техник, 2011 № 02
Ну, а проще суть дела можно объяснить так. Органическая химия, как известно, основана на реакциях углерода. Этот элемент является не только фундаментом органики во всех ее проявлениях, но и служит основой промышленности, которая обеспечивает нас медикаментами, удобрениями, пластиками, полупроводниками…
Чтобы получить все эти соединения, химики должны сблизить атомы углерода так, чтобы они образовали прочные связи. Однако углерод — это довольно инертный химический элемент, который не так уж охотно вступает в химические взаимодействия. А потому химики изо всех сил изобретают всевозможные приемы, повышающие реакционную способность углерода.
Беда только в том, что эти методы становятся все менее эффективными по мере того, как химики ведут синтез все более сложных соединений. И лишь реакции, разработанные новоявленными лауреатами с помощью палладиевого катализатора, позволили избежать многих побочных и нежелательных явлений.
В итоге вместо того чтобы работать лишь с десятком более или менее активных элементов, вроде водорода, хлора, кислорода, химики теперь могут работать и со многими другими — ведь всего в таблице Менделеева более сотни элементов. Главным образом это касается переходных металлов, которые оказались весьма полезны в органическом синтезе. Например, химикам удалось синтезировать вещество гексадармовид, которое активно подавляет рост раковых клеток. Первоначально это соединение было обнаружено в тканях морской губки, живущей на большой глубине. Его количество измерялось буквально миллиграммами и стоило баснословно дорого. Теперь налажен синтез этого вещества, ставшего основой эффективного лекарства.
Подобным образом удалось наладить производство новых антибиотиков, способных подавлять рост болезнетворных микробов, не поддающихся другим лекарствам.
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Лазер излучает… темноту!
Пишут обычно черным по белому — темной пастой или чернилами по бумаге. Но можно писать и наоборот — белым мелом на черной доске. Эта аналогия наглядно объясняет суть новшества, предлагаемого ныне сотрудниками американского Национального института технологических стандартов.
Говоря иначе, в институте создано устройство, которое его создатели преподносят как «лазер, источающий… темноту». Обычные лазеры, как известно, с очень высокой частотой генерируют вспышки света. В новом же устройстве происходит все с точностью до наоборот: постоянный световой поток перемежается резкими краткими провалами, когда интенсивность светового излучения падает на 70 %.
Какая в этом необходимость? Чтобы понять это, углубимся несколько в историю. Когда в конце прошлого века авиаконструкторы начали работать над созданием технологии «Стелле», они полагали, что покрытие самолета, практически полностью поглощающее излучение радара, сделает самолет «невидимкой». Однако при этом они не обратили внимания на такую «частность».
А именно: в природе уже присутствует некий электромагнитный фон. И если из какой-то точки пространства перестает приходить фоновое излучение, этот факт может выдать «Стелле». Что и произошло на практике.
Люди умные отличаются от своей противоположности тем, что умеют учиться не только на своих, но и на чужих ошибках. Сотрудники института стандартов решили использовать метод инверсии и решать свою задачу способом «от противного». Рассуждали они примерно так. Ныне лазеры используются в основном для передачи сигналов информации по линиям оптоволоконной связи. Сигналы эти представляют собой своего рода «морзянку» из лазерных импульсов и промежутков между ними. Для того чтобы повысить четкость передачи, можно либо повысить яркость лазерных импульсов, либо усилить «черноту» в промежутках между ними.
Так вот оказалось, что второй вариант требует меньше энергии. Ведь «чернота» попросту означает отсутствие сигнала. На практике и в самом деле оказалось, что стандартный лазерный импульс быстрее меняет свою форму, а то и просто исчезает при неблагоприятных условиях. Это может приводить к потерям информации и ошибкам в ее передаче. А вот с «темными» импульсами, уверяют исследователи, ничего подобного не происходит. Новый лазер способен генерировать «черноту» без каких-либо внешних оптических элементов, которые могут оказывать на них влияние. И ошибок при передаче информации меньше.
Сама лазерная установка построена на базе диода. Она, как говорят специалисты, «использует энергетическую динамику квантовых точек, а также метод синхронизации колебаний, с помощью которого удается получать сверхкороткие импульсы, продолжительность которых исчисляется в пико- или фемтосекундах (то есть секундах в минус двенадцатой и пятнадцатой степенях соответственно)».
Что стоит за этим довольно туманным объяснением, авторы разработки не уточняют — схема темнового лазера является их «ноу-хау». Известно только, что, кроме его использования в качестве передатчика информации в оптоволоконных сетях, американские исследователи видят перспективу применения своего детища в вычислительных и измерительных устройствах. Говорят, лазер с «темными» импульсами может стать частью атомных часов следующего поколения, для которых обычные лазеры большой мощности признаны чересчур дорогими.
И. ЗВЕРЕВ
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Дублеры людей
Ровно 90 лет тому назад мир впервые услышал слово «робот». Его придумал Йозеф Чапек — брат известного чешского писателя Карела Чапека, работавшего в то время над пьесой «Р. У. Р.» («Россумские универсальные роботы»), где говорилось о том, как механические люди подняли бунт на фабрике. Ну, а как сегодня выглядят роботы-андроиды — механические помощники людей, внешне похожие на нас с вами?
Легенды прошлых лет
Вообще-то говоря, механические люди появились задолго до того, как братья Чапеки придумали им название. Говорят, что еще в доме Альберта Великого — немецкого ученого, жившего в XIII веке, открывала и закрывала двери механическая служанка. А знаменитый гений Возрождения Леонардо да Винчи в 1495 году предложил проект робота-рыцаря, одетого в броню и способного имитировать человеческие движения.
Согласно записям голландского купца Йохана Веема, при дворе Ивана Грозного, правившего Россией в XVI столетии, имелся некий «железный мужик». Он на потеху гостям побил медведя, а потом «подносил царю чашу с вином, кланялся и что-то напевал на этом невыносимом русском языке, который мне так никогда и не поддался», писал Веем.
В 1865 году американец Эдвард Эллис в историческом романе «Громадный охотник, или Паровой Человек в прериях» поведал миру об одаренном конструкторе — Джонни Брейнерде, первым построившем «человека, который движется на пару». «Этот могучий исполин был приблизительно трехметрового роста, ни одна лошадь не могла сравниться с ним: гигант с легкостью тянул фургон с пятью пассажирами. У Парового Человека все, даже лицо, было сделано из железа, а тело его было окрашено в черный цвет», — живописал литератор.
Сохранилась и старинная гравюра, изображающая механического андроида, который был построен механиком Джорджем Муром в 1893 году и приводился в действие паровой машиной мощностью в 0,5 л. с. Во время испытаний он развил скорость 14 км/ч и тащил за собой тележку с дровами.
1. Механический человек Дж. Мура.
От игр к работе
Впрочем, существовали ли эти механические люди на самом деле, мы с вами, наверное, уже никогда не узнаем. Но вот вам сведения о тех разработках, которые существовали в действительности.
В 1937 году на Всемирной выставке в Париже посетителей советского павильона встречал механический человек с квадратной головой. На его груди красовалась надпись — В2М. Так зашифровал свое имя конструктор робота — Вадим Викторович Мацкевич. Или просто Вадим, поскольку было ему в то время всего 15 лет.
В 1940 году экспонатом Нью-Йоркской всемирной ярмарки стал «Химический человек» — робот, созданный Хейзом Гордоном из Бостона. Он имитировал процессы пищеварения, дыхания и даже реагировал на болевые раздражения.
Но все это были вообще-то игрушки, подобные тем механическим куклам, которые еще в XVII веке демонстрировали французский часовщик Вокансон, а также швейцарцы отец и сын Дро. Их творения на потеху публике играли на музыкальных инструментах, писали тексты и даже рисовали.
Однако все эти творения изо дня в день повторяли одно и то же, подчиняясь однажды заложенной в них программе. Перепрограммируемые же роботы, способные на выполнение разных работ, получили распространение лишь во второй половине XX века, с развитием кибернетики и робототехники.