Вокруг Света - Журнал «Вокруг Света» №09 за 2008 год
В те годы космология была сугубо умозрительной наукой, пытавшейся чисто теоретически применить физические уравнения ко Вселенной как целому. Поэтому решения Фридмана поначалу были восприняты — в том числе и самим Эйнштейном — как математическое упражнение. Вспомнили о нем после открытия разбегания галактик в 1929 году. Фридмановские решения прекрасно подошли для описания наблюдений и стали важнейшей и широко используемой космологической моделью. А Эйнштейн позднее назвал космологическую постоянную своей «самой большой научной ошибкой».
Далекие сверхновые
Постепенно наблюдательная база космологии становилась все более мощной, а исследователи учились не только задавать вопросы природе, но и получать на них ответы. И вместе с новыми результатами росло и число аргументов в пользу реального существования «самой большой научной ошибки» Эйнштейна. В полный голос об этом заговорили в 1998 году после наблюдения далеких сверхновых звезд, которые указывали, что расширение Вселенной ускоряется. Это означало, что во Вселенной действует некая расталкивающая сила, а значит, и соответствующая ей энергия, похожая по своим проявлениям на эффект от лямбда-члена в уравнениях Эйнштейна. По сути, лямбда-член представляет собой математическое описание простейшего частного случая темной энергии.
Напомним, что согласно наблюдениям космологическое расширение подчиняется закону Хаббла: чем больше расстояние между двумя галактиками, тем быстрее они удаляются друг от друга, причем скорость, определяемая по красному смещению в спектрах галактик, прямо пропорциональна расстоянию. Но до недавнего времени закон Хаббла был непосредственно проверен лишь на относительно небольших расстояниях — тех, что удавалось более или менее точно измерить. О том, как расширялась Вселенная в далеком прошлом, то есть на больших расстояниях, можно было судить только по косвенным наблюдательным данным. Заняться прямой проверкой закона Хаббла на больших расстояниях удалось лишь в конце XX века, когда появился способ определять расстояния до далеких галактик по вспыхивающим в них сверхновым звездам.
Вспышка сверхновой — это момент в жизни массивной звезды, когда она испытывает катастрофический взрыв. Сверхновые бывают разных типов в зависимости от конкретных обстоятельств, предшествующих катаклизму. При наблюдениях тип вспышки определяют по спектру и форме кривой блеска. Сверхновые, получившие обозначение Ia, возникают при термоядерном взрыве белого карлика, масса которого превысила пороговое значение ~1,4 массы Солнца, называемое пределом Чандрасекара. Пока масса белого карлика меньше порогового значения, сила гравитации звезды уравновешивается давлением вырожденного электронного газа. Но если в тесной двойной системе с соседней звезды на него перетекает вещество, то в определенный момент электронное давление оказывается недостаточным и звезда взрывается, а астрономы регистрируют еще одну вспышку сверхновой типа Ia. Поскольку пороговая масса и причина, по которой белый карлик взрывается, всегда одинаковы, такие сверхновые в максимуме блеска должны иметь одинаковую, причем весьма большую светимость и могут служить «стандартной свечой» для определения межгалактических расстояний. Если собрать данные по многим таким сверхновым и сравнить расстояния до них с красными смещениями галактик, в которых случались вспышки, то можно определить, как менялся в прошлом темп расширения Вселенной, и подобрать соответствующую космологическую модель, в частности подходящую величину лямбда-члена (плотности темной энергии).
Однако несмотря на простоту и ясность этого метода, он сталкивается с рядом серьезных трудностей. Прежде всего отсутствие детальной теории взрыва cверхновых типа Ia делает зыбким их статус стандартной свечи. На характер взрыва, а значит, и на светимость сверхновой могут влиять скорость вращения белого карлика, химический состав его ядра, количество водорода и гелия, перетекшего на него с соседней звезды. Как все это сказывается на кривых блеска, пока достоверно неизвестно. Наконец, сверхновые вспыхивают не в пустом пространстве, а в галактиках, и свет вспышки может, к примеру, оказаться ослаблен случайным газопылевым облаком, встретившимся на пути к Земле. Все это ставит под сомнение возможность использования сверхновых в качестве стандартных свечей. И если бы в пользу существования темной энергии был только этот довод, данная статья вряд ли была бы написана. Так что хотя «аргумент сверхновых» спровоцировал широкую дискуссию о темной энергии (и даже появление самого этого термина), уверенность космологов в ее существовании опирается на другие, более убедительные аргументы. К сожалению, они не столь просты, и поэтому описать их можно лишь в самых общих чертах.
Основные эпохи эволюции Вселенной: инфляция, доминирование излучения, вещества и темной энергии. Рис. NASA, WMAP SCIENCE TEAM
Краткая история времен
По современным представлениям, рождение Вселенной должно описываться в терминах еще не созданной квантовой теории гравитации. Понятие «возраст Вселенной» имеет смысл для моментов времени не раньше 10-43 секунд. На меньших масштабах уже нельзя говорить о привычном нам линейном течении времени. Топологические свойства пространства тоже становятся нестабильными. По-видимому, в малых масштабах пространство-время заполнено микроскопическими «кротовыми норами» — своего рода тоннелями, соединяющими разнесенные области Вселенной. Впрочем, о расстояниях или порядке следования событий говорить тоже невозможно. В научной литературе такое состояние пространства-времени с флуктуирующей топологией называют квантовой пеной. По неизвестным пока причинам, возможно, из-за квантовой флуктуации, в пространстве Вселенной возникает физическое поле, которое в возрасте около 10-35 секунд заставляет Вселенную расширяться с колоссальным ускорением. Этот процесс называют инфляцией, а вызывающее его поле — инфлатоном. В отличие от экономики, где инфляция является неизбежным злом, с которым нужно бороться, в космологии инфляция, то есть экспоненциально быстрое увеличение Вселенной, — это благо. Именно ей мы обязаны тем, что Вселенная обрела большой размер и плоскую геометрию. В конце этой короткой эпохи ускоренного расширения запасенная в инфлатоне энергия порождает известную нам материю: разогретую до огромной температуры смесь излучения и массивных частиц, а также едва заметную на их фоне темную энергию. Можно сказать, что это и есть Большой взрыв. Космологи говорят об этом моменте, как о начале радиационно-доминированной эпохи в эволюции Вселенной, поскольку большая часть энергии в это время приходится на излучение. Однако расширение Вселенной продолжается (хотя теперь уже и без ускорения) и оно по-разному отражается на основных типах материи. Ничтожная плотность темной энергии со временем не меняется, плотность вещества падает обратно пропорционально объему Вселенной, а плотность излучения снижается еще быстрее. В итоге спустя 300 тысяч лет доминирующей формой материи во Вселенной становится вещество, большую часть которого составляет темная материя. С этого момента рост возмущений плотности вещества, едва тлевший на стадии доминирования излучения, становится достаточно быстрым, чтобы привести к образованию галактик, звезд и столь необходимых человечеству планет. Движущей силой этого процесса является гравитационная неустойчивость, приводящая к скучиванию вещества. Едва заметные неоднородности оставались еще с момента распада инфлатона, но пока во Вселенной доминировало излучение, оно мешало развитию неустойчивости.
Теперь основную роль начинает играть темная материя. Под действием собственной гравитации области повышенной плотности останавливаются в своем расширении и начинают сжиматься, в результате чего из темной материи образуются гравитационносвязанные системы, называемые гало. В гравитационном поле Вселенной образуются «ямы», в которые устремляется обычное вещество. Накапливаясь внутри гало, оно формирует галактики и их скопления. Этот процесс образования структур начался более 10 миллиардов лет назад и шел по нарастающей, пока не наступил последний перелом в эволюции Вселенной. Через 7 миллиардов лет (это примерно половина нынешнего возраста Вселенной) плотность вещества, которая продолжала снижаться из-за космологического расширения, стала меньше плотности темной энергии. Тем самым завершилась эпоха доминирования вещества, и теперь темная энергия контролирует эволюцию Вселенной. Какова бы ни была ее физическая природа, проявляется она в том, что космологическое расширение вновь, как в эпоху инфляции, начинает ускоряться, только на этот раз очень медленно. Но даже этого достаточно, чтобы затормозить формирование структур, а в будущем оно должно вовсе прекратиться: любые недостаточно плотные образования будут рассеиваться ускоряющимся расширением Вселенной. Временное «окно», в котором работает гравитационная неустойчивость и возникают галактики, захлопнется уже через десяток миллиардов лет. Дальнейшая эволюция Вселенной зависит от природы темной энергии. Если это космологическая постоянная, то ускоренное расширение Вселенной будет продолжаться вечно. Если же темная энергия — это сверхслабое скалярное поле, то после того как оно достигнет состояния равновесия, расширение Вселенной станет замедляться, а возможно сменится сжатием. Пока физическая природа темной энергии неизвестна, все это не более чем умозрительные гипотезы. Таким образом, с определенностью сказать можно только одно: ускоренное расширение Вселенной будет продолжаться еще несколько десятков миллиардов лет. За это время наш космический дом — галактика Млечный Путь — сольется со своей соседкой — Туманностью Андромеды (и большинством галактик-спутников меньшей массы, входящих в состав Местной Группы). Все прочие галактики улетят на большие расстояния, так что многие из них нельзя будет увидеть даже в самый мощный телескоп. Что касается реликтового излучения, которое приносит нам так много важнейшей информации о структуре Вселенной, то его температура упадет почти до нуля, и этот источник информации будет потерян. Человечество останется Робинзоном на острове с эфемерной перспективой обзавестись хотя бы Пятницей.