Владимир Сидорович - Мировая энергетическая революция. Как возобновляемые источники энергии изменят наш мир
Нынешние размеры промышленной солнечной генерации еще раз подчеркивают динамику развития мировой возобновляемой энергетики – какие-то десять лет назад мощность крупнейшей фотоэлектрической электростанции (Bavaria Solarpark в Германии) составляла всего 6,3 МВт.
В России солнечная энергетика находится в зачаточном состоянии. В течение последних лет были созданы рамочные условия для развития солнечной (фотоэлектрической) генерации и уже реализованы проекты электростанций промышленного масштаба. В 2014 г. введена в строй Кош-Агачская солнечная электростанция на Алтае мощностью 5 МВт, крупнейшая в России на сегодняшний день (не считая полученных «в наследство» солнечных электростанций в Крыму). До 2020 г. планируется построить еще несколько сотен мегаватт фотоэлектрических генерирующих мощностей. Правовые условия для распределенной (частной) солнечной генерации в России не созданы.
Зеркала Архимеда
Для производства солнечного электричества исключительно в крупных промышленных масштабах, сопоставимых по размерам с традиционной тепловой генерацией, используется солнечная тепловая (гелиотермальная) электроэнергетика (концентрированная солнечная энергетика – CSP), которая преобразует солнечное излучение иначе, чем фотоэлектрика.
Мы знакомы с принципом действия CSP с детства. Помните, как ловили солнечный луч лупой? Предметы, поднесенные под линзу, начинали плавиться, дымиться или даже возгораться. Любители истории, возможно, помнят легенду, по которой знаменитый Архимед оборонял родные Сиракузы с помощью концентрированных солнечных лучей. «Когда римские корабли находились на расстоянии полета стрелы, Архимед стал действовать шестиугольным зеркалом, составленным из небольших четырехугольных зеркал, которые можно было двигать при помощи шарниров и металлических планок. Он установил это зеркало так, чтобы оно пересекалось в середине зимней и летней солнечными линиями, и поэтому принятые этим зеркалом солнечные лучи, отражаясь, создавали жар, который обращал суда римлян в пепел, хотя они находились на расстоянии полета стрелы», – пишет историк[64]. В 1973 г. греческий ученый д-р Иоаннис Саккас, пытаясь понять, мог ли Архимед действительно разрушить римский флот в 212 г. до н. э., выстроил 60 греческих моряков, каждый из которых держал продолговатое зеркало и направлял отраженный солнечный свет в одну точку – на изготовленный из фанеры и просмоленный силуэт корабля, расположенный в 160 м. Корабль загорелся через несколько минут, однако историки продолжают сомневаться в истории Архимеда.
Тем не менее описанный принцип используют сегодня в гелиотермальной энергетике. Установленные на большой территории зеркала-гелиостаты, поворачивающиеся вслед за Солнцем, сводят солнечные лучи в один пучок, направляя его на емкость с теплоносителем, в качестве которого обычно выступает вода. Дальше процесс происходит так же, как на обычных ТЭС: вода нагревается, закипает, превращается в пар, пар приводит в движение тепловой двигатель (обычно паровую турбину), турбина вращает ротор генератора, который вырабатывает электричество.
В настоящее время в данной области лидируют Испания и США, а ведь когда-то, сейчас сложно в это поверить, одним из технологических лидеров направления была Россия (точнее, СССР). В 1986 г., когда вся установленная в мире мощность солнечной генерации составляла всего 21 МВт, вступила в строй Крымская солнечная электростанция мощностью 5 МВт, работающая именно по принципу CSP. Увы, она была закрыта и разрушена в 90-х гг. ХХ века. Насколько передовой была технология – свидетельствует тот факт, что в то время существовала только одна подобная электростанция – первая и вторая очередь расположенного в Калифорнии комплекса Solar Energy Generating Systems (SEGS), и до 2005 г., помимо SEGS, в мире подобные электростанции не строились. С тех пор установленная в мире мощность CSP выросла до 4,8 ГВт[65] (причем основной рост начался в 2009 г. и существенная часть, 0,9 ГВт, была добавлена в 2014 г.), что составляет примерно всего лишь 1/40 часть мощности фотоэлектрической генерации.
Очевидно, гелиотермальная электроэнергетика конкурирует не только с углеводородной генерацией, но и с основным на сегодняшний день видом солнечной энергетики – фотоэлектрикой. Стремительное падение цены на солнечные модули давит на инвесторов в солнечное тепловое электричество. Именно по причине «неконкурентоспособности по сравнению с фотоэлектрикой» компания Google, ранее вкладывавшаяся в CSP, в ноябре 2011 г. отказалась от дальнейших инвестиций[66]. Действительно, удельные капитальные затраты ($3550–8760 на киловатт установленной мощности), а также приведенная стоимость производства электричества (LCOE), лежащая в границах $0,20–0,35 на киловатт-час[67], пока превышают соответствующие показатели как углеводородной, так и фотоэлектрической генерации, где отдельные проекты промышленного масштаба показывают LCOE менее $0,08 на киловатт-час[68].
В то же время развитие технологий и удешевление оборудования не обходит стороной и сферу солнечного теплового электричества. Кроме того, существенным преимуществом CSP является наличие накопителя тепловой энергии, который используется в большинстве проектов и с помощью которого значительно повышается коэффициент использования установленной мощности электростанции. Такой аккумулятор энергии, в котором на сегодняшний день в большинстве случаев используется расплавленная соль, позволяет выдавать электричество в утренние и вечерние часы или даже ночью, когда фотоэлектрика «спит».
Чтобы оправдать себя экономически, солнечные тепловые (гелиотермальные) электростанции должны строиться в регионах с большим количеством солнечных дней и высоким уровнем прямого солнечного излучения (более 5 кВт · ч/м² в день), к которым относятся юго-восток США, Испания, Австралия, Северная и Южная Африка, Южная Америка, Индия, Китай, Средний Восток. Соответственно, географическая сфера их применения, в отличие от фотоэлектрики, весьма ограниченна, и в России, даже в самых солнечных районах, их использование вряд ли целесообразно.
Международное энергетическое агентство видит в CSP большой потенциал, предполагая в рамках одного из сценариев развития энергетического рынка, что данный способ генерации к 2050 г. может обеспечить 11 % мирового производства электричества[69] (еще 16 % обеспечит фотоэлектрика, что приведет нас к вышеуказанной «солнечной доле» в 27 %). Более того, некоторые исследования рассматривают варианты повышения доли солнечного теплового электричества до 25 % к указанному сроку[70]. Я считаю такие планы чересчур агрессивными уже по той причине, что в мире помимо гелиотермальной электроэнергетики существует широкий набор как чистых, так и углеводородных способов генерации, которые конкурируют между собой за увеличивающийся в размерах энергетический пирог. В то же время на региональном уровне к 2050 г. STE может обеспечивать 40 % производства электричества на Среднем Востоке, 26 % – в Африке и 21 % – в Индии[71].
Солнечное будущее
Очевидно, что стремительный рост солнечной энергетики является угрозой сырьевой власти, которая может сопротивляться дальнейшему распространению чистой энергии. Однако мы практически уверены в тщетности попыток отката назад, и «сырьевым монстрам» вряд ли удастся задушить солнечную энергетику в колыбели. Она уже подросла и широко проникла в экономику десятков стран и жизнь десятков миллионов людей, превратилась в мощную наукоемкую отрасль глобальной экономики. Количество занятых в ней превысило 2,2 млн человек, в том числе 1,58 млн в Китае, более 100 000 в Индии и США, около 60 000 в Германии[72].
Энергообеспечение (не только электричеством) земного шара исключительно с помощью солнца – не утопия. И не исключено, что еще в нынешнем столетии человек придет к созданию энергетической системы, где солнце будет выступать абсолютно доминирующим источником энергии, если только не появятся иные, более рациональные способы генерации. Для такого глобального солнечного энергообеспечения потребуется площадь фотоэлектрических модулей, сопоставимая с размерами Испании[73]. Вроде бы много, но это только в том случае, если размещать их в одном месте. Солнце ведь светит круглосуточно, в разное время освещая территории на разной долготе. Возобновляемые источники энергии являются распределенными и доступны в разной степени во всех уголках земного шара. Зачем эксплуатировать их централизованно? Поэтому опоясывающие земной шар и связанные между собой «умными сетями» солнечные электростанции вполне могли бы обеспечить все человечество чистой энергией.
Вернувшись из области футурологии к нашим прогнозам, отметим, что дальнейшее развитие солнечной энергетики будет во многом зависеть от энергетической эффективности солнечных модулей, темпов удешевления оборудования, а также, в меньшей степени, развития аккумуляторных технологий, о которых будет рассказано в главе «Нестабильность ВИЭ и системы хранения энергии». В то же время на основе текущих трендов и имеющихся прогнозов можно с высокой долей уверенности заявить, что солнечная энергетика в течение двух – четырех десятилетий превратится в главный генератор – основного производителя электричества для планеты, существенно сократив сферу применения углеводородов.