KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Зоология » Александр Лаздин - Электричество в жизни рыб

Александр Лаздин - Электричество в жизни рыб

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Лаздин, "Электричество в жизни рыб" бесплатно, без регистрации.
Перейти на страницу:

Рис. 9. Электрическое поле гимнарха (вид сверху)


Несмотря на то что разряды неэлектрических рыб разных видов несколько отличаются, в них отмечены и общие особенности. Амплитуда напряжения разрядов обычно не превышает 100—200 мкВ (она несколько выше лишь у некоторых рыб из семейств осетровых, лососевых, сельдевых и сомовых).

Рис. 10 Импульсы африканского слоника а — чередование импульсов в электрическом разряде (осциллограмма)

б — одиночный импульс (внизу отметки времени с интервалами 2 мс)


Рис. 11. Электрическое поле африканского слоника. Жирная линия обозначает рыбу (хвост справа). Числа характеризуют соответствующие эквипотенциальные линии поля (в милливольтах).


Частота разрядов неэлектрических рыб лежит в широкой области спектра — от долей герца до 2 кГц. Низкочастотный компонент разряда — 0,1—10 Гц — можно зарегистрировать при движении заряженных участков тела рыбы относительно электродов. Высокочастотный компонент разрядов — от 20 Гц до 2 кГц — проявляется только в момент, когда рыба возбуждена: при нападении или обороне, резких движениях и смене ситуаций. Электрические поля, образующиеся при таких разрядах, взаимодействуют между собой: высокочастотные поля как бы накладываются на низкочастотные.

Рис. 12 Электрические импульсы карася


Рис. 13 Электрические импульсы пескаря


Длительность разрядов у различных видов неэлектрических рыб — 5—280 мс Кратковременны разряды у горбыля, красноперки и карася (рис 12); средние по продолжительности — у окуня, пескаря (рис. 13) и вьюна, наиболее длительные — у щуки.

Напряженность электрического поля, создаваемого большинством неэлектрических рыб, близка по величине и на расстоянии 5—10 см от них достигает 8—15 мкВ на 1 см.

В связи с видовыми особенностями строения тела и плавания рыб образуемые ими низкочастотные разряды специфичны. Поэтому вид некоторых рыб можно определять по осциллограмме их разрядов.

Каким же образом неэлектрические рыбы, не обладающие специализированными электрогенераторными системами, могут образовывать электрические поля?

Наиболее вероятно предположение о нервно-мышечном их образовании, основанное на способности обычных мышечных и нервных клеток генерировать разряды, образующие внешние электрические поля. Возможно, что относительно сильные поля возникают при синхронной работе некоторого количества таких клеток. То, что это вполне возможно, подтверждает особое упорядоченное расположение мышечных клеток, благодаря которому мышечные волокна идут в одном направлении: у большинства рыб — вдоль всего тела, у сельдевых — поперек.

Если допустить, что каждое мускульное волокно представляет собой излучающий диполь, то максимальная разность потенциалов в его поле будет находиться у большинства рыб между головой и хвостом, а у сельдевых сбоку.

Важным подтверждением нервно-мышечной природы разрядов неэлектрических рыб является также их сходство с биопотенциалами руки человека по частотному составу, структуре образуемого внешнего поля и характеру ослабления в воде с увеличением расстояния.

Электромагнитная природа разрядов рыб доказана экспериментально. Известно, что электромагнитное поле характеризуется как электрическим, так и магнитным компонентами. Следовательно, регистрировать разряды рыб можно, воспринимая какой-либо один из них Регистрацию электрического компонента можно осуществить, используя электроды, а магнитного — при помощи специальных антенн, индукционных катушек с большим количеством витков.

Так как магнитный компонент легко преодолевает экраны, непроницаемые для обычного электрического поля, сигналы рыб можно регистрировать в воздухе над аквариумом, используя индукционные катушки. Это возможно даже в том случае, если аквариум, где находится рыба, окружен сеткой Фарадея (медная сетка, связанная с землей). Подобный способ регистрации открывает заманчивые перспективы разработки нового приема обнаружения рыб в водоемах.

Электрические рецепторы рыб

По степени развития электрической чувствительности рыб можно подразделить на две группы. К первой относятся почти все виды, имеющие электрогенераторные органы (исключение составляют электрический сом и звездочеты, у которых электрорецепторов нет); ко второй — не имеющие электрических органов (кроме некоторых скатов, осетровых, сомовых и акуловых).

Тем не менее рыбы, у которых отсутствуют электрорецепторы, обладают повышенной электрической чувствительностью по сравнению с другими позвоночными животными. Благодаря ей рыбы в процессе эволюции выработали особые безусловнорефлекторные двигательные реакции на электрические поля — так называемые электротаксисы.

Восприятие рыбами слабых электрических полей

В 1917 г. американские ученые Г. Паркер и В. Гензен изучали чувствительность американского сомика к различным раздражителям. Воздействуя на рыб палочками, изготовленными из стекла, дерева и металла, они обнаружили, что сомики чувствуют приближение металлической палочки на расстоянии нескольких сантиметров, а на стеклянную реагируют только при ее прикосновении. Если поверхность соприкосновения металлической палочки с водой составляла 5—6 см2, рыбы уплывали, а при 0,9—2,8 см2 — они подплывали и «клевали» место контакта металла с водой. На электрически изолированные от воды (покрытые слоем парафина) металлические палочки рыбы реагировали так же, как и на стеклянные,— лишь в момент прикосновения На основании этих наблюдений было сделано предположение, что реакцию сомиков вызывали микротоки, возникающие в результате контакта металла с водой (гальванический эффект).

Дальнейшие эксперименты подтвердили этот вывод. Создавая в воде с помощью электродов и гальванического элемента электрическое поле постоянного тока, Паркер и Гензев обнаружили у рыб такие же реакции, какие вызывали металлические палочки. Токи менее 0,99 мкА вызывали «клев» электродов, больше 1,47 мкА — отрицательную реакцию.

Высокую чувствительность некоторых сомовых рыб к электрическим полям отмечали японские ученые С. Кокубо и К. Узука. При дальнейших исследованиях было установлено, что эти рыбы обладают специализированными электрическими рецепторами.

Иной механизм восприятия электрических полей у рыб, не имеющих электрорецепторов. Электрический ток — универсальный раздражитель нервных и мышечных клеток. Поэтому рыбы реагируют на них при воздействии непосредственно на нервно-мышечные структуры или рецепторы, предназначенные для восприятия неэлектрических раздражителей.

Чувствительность таких рыб к электрическому току исследовалась при изучении их реакций на сильные электрические поля. Ее порог определялся по значению напряжения, при котором наступала первичная двигательная реакция. Однако выяснилось, что этот метод не дает точных данных. Например, у морской лисицы, обладающей чувствительностью в 0,01 мкВ на 1 см, первичная двигательная реакция не совпадает с порогом восприятия электрического поля и проявляется только при напряжении в десятки — сотни вольт. Таким образом, не исключено, что рыбы, не имеющие электрорецепторов, чувствуют более слабые электрические поля.

Следующий этап изучения электрической чувствительности рыб начался с 1958 г., когда Г. Лиссман обнаружил у слабоэлектрических рыб — гимнарха и гимнотуса — особые высокочувствительные электрорецепторы. Стало очевидным, что некоторые рыбы с их помощью ориентируются в окружающей среде. Рыб, имеющих электрорецепторы, стали исследовать многие ученые.

Датские ученые С. Дийкграф и А. Кальмджин в 1962 г. установили, что высокой чувствительностью к электрическим полям переменного тока обладают обыкновенные скаты и акулы. Напряженность поля в десятые доли микровольта на 1 см оказалась достаточной, чтобы вызвать у акул рефлекс смыкания век (моргание глазами) и изменить у морской лисицы ритм дыхания. Выяснилось, что высокая чувствительность этих рыб к электрическим полям обусловлена наличием у них специфических рецепторов — так называемых ампул Лоренцини. При нарушении иннервации их чувствительность понижалась в несколько десятков раз. Ученые пришли к выводу, что ампулы Лоренцини являются у акул и скатов электрорецепторами.

В дальнейших экспериментах исследовалась чувствительность акул и скатов к электрическим полям естественного происхождения. Реакция рыб отмечалась с помощью электрокардиограммы, снимаемой с двух электродов, помещенных в перикард сердца Если рыбы воспринимали электрические поля, мышечный потенциал сердца значительно изменялся — уменьшались его амплитуда и частота следования импульсов. Оказалось, что в благоприятных условиях акулы и скаты чувствительны к электрическим полям напряженностью в сотые доли микровольта на сантиметр, т е. примерно в 10 раз более чувствительны к воздействию электрических полей, чем показывали опыты, проводившиеся другими способами.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*