KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Языкознание » Михаил Мальковский - Прикладное программное обеспечение: системы автоматической обработки текстов

Михаил Мальковский - Прикладное программное обеспечение: системы автоматической обработки текстов

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Михаил Мальковский, "Прикладное программное обеспечение: системы автоматической обработки текстов" бесплатно, без регистрации.
Михаил Мальковский - Прикладное программное обеспечение: системы автоматической обработки текстов
Название:
Прикладное программное обеспечение: системы автоматической обработки текстов
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
15 февраль 2019
Количество просмотров:
205
Возрастные ограничения:
Обратите внимание! Книга может включать контент, предназначенный только для лиц старше 18 лет.
Читать онлайн

Обзор книги Михаил Мальковский - Прикладное программное обеспечение: системы автоматической обработки текстов

Учебное пособие знакомит читателей с одной из наиболее интересных и перспективных задач прикладного программирования - задачей автоматической обработки тестов на естественном языке. Рассмитриваются рациональные сферы применения систме автоматической обработки текстов , проблемы их линвистиеского обеспечения. Для студентов 2 курса факультета ВМК МГУ в поддержку обязательного лекционного курса "Прикладное программное обеспчение". Авторы пособия благодарят Владимира Геннадиевича Абрамова и Валерия Ивановича Родина за ценные советы и замечания. Рецензенты: проф. Р.Л. Смелянский, доц. Л.С. Корухова. Печатается по решению Редакционно-издательского совета факультета вычислительной математики и кибернетики МГУ им. М.В. Ломоносова.
Назад 1 2 3 4 5 ... 15 Вперед
Перейти на страницу:

Михаил Георгиевич Мальковский, Татьяна Юрьевна Грацианова, И. Н. Полякова


Прикладное программное обеспечение: системы автоматической обработки текстов

1. Сферы применения систем автоматической обработки текстов

Системы автоматической обработки текста (т.е. переработки одного вида текста в памяти ЭВМ в другой) по выполняемым функциям (входной и выходной информации) можно классифицировать следующим образом:


Язык входного текста


Язык выходного текста


1


Естественный-1


Естественный-2


2


Искусственный


Естественный


3


Естественный


Искусственный / Естественный


4


Естественный


Естественный + { Искусственный}


К системам первого типа относятся программы машинного перевода, получающие текст на некотором естественном языке и перерабатывающие его в текст на другом естественном языке. Второй тип - системы генерации (синтеза) текстов по некоторому формальному описанию. Системы третьего типа, наоборот, перерабатывают текст на естественном языке в текст на искусственном (индексирование, извлечение смыслового содержания) или в другой текст на естественном языке (реферирование). К последнему классу отнесем программы, занимающиеся проверкой текста, написанного на естественном языке. Они в результате своей работы либо исправляют входной текст автоматически, либо формируют некоторый протокол замечаний.

Естественный язык - сложная, многоплановая система, с множеством правил, внутренних связей, имеющая отношение ко всем аспектам деятельности человека. Точность и правильность работы программ определяется глубиной анализа. Достаточно глубокий анализ пока достигается только для определенных узких предметных областей (из-за специфичности подъязыка такой области: в каждой области свои термины, специфические семантические отношения и т.п.).

Для создания систем, работающих со всем естественным языком без потери глубины анализа, в настоящий момент не хватает либо технических возможностей (быстродействия, памяти), либо теоретической базы (например, пока нет даже единой схемы достаточно полного, глубокого и непротиворечивого описания семантики естественного языка). Однако в коммерческих системах, ввиду того, что предназначаются они для большого количества пользователей, разных предметных областей, принята концепция поверхностного анализа, к тому же и производится такой анализ значительно быстрее. Дальнейшее продвижение вперед, использование естественного языка в практических областях невозможно без оснащения этих систем обширными и глубокими (с точки зрения охвата различных явлений языка) описаниями и моделями, созданными лингвистами-профессионалами.

Эта тенденция прогнозируется многими исследователями и прослеживается на примере развития АОТ-систем, уже в наши дни представляющих коммерческий интерес и использующихся при решении следующих прикладных задач:

1. Machine Translation and Translation Aids - машинный перевод;

2. Text Generation - генерация текста;

3. Localization and Internationalization - локализация и интернационализация;

4. Controlled Language - работа на ограниченном языке;

5. Word Processing and Spelling Correction - создание текстовых документов (ввод, редактирование, исправление ошибок)

6. Information Retrieval - информационный поиск и связанные с ним задачи.

Отметим, что это деление несколько условное, и в реальных системах часто встречается объединение функций. Так, для машинного перевода требуется генерация текста, а при исправлении ошибок приходится заниматься поиском вариантов словоформы и т.д.

1.1. Машинный перевод

Исторически машинный перевод является первой попыткой использования компьютеров для решения невычислительных задач (знаменитый Джорджтаунский эксперимент в США в 1954 г.; работы по машинному переводу в СССР, начавшиеся в 1954 г.). Развитие электронной техники, рост объема памяти и производительности компьютеров создавали иллюзию быстрого решения этой задачи. Идея захватила воображение ученых и администраторов. Практическая цель была простой: загрузить в память компьютера максимально возможный словарь и с его помощью из иноязычных текстов получать текст на родном языке в удобочитаемом виде. Однако первоначальная эйфория по поводу того, что столь трудоемкую работу можно поручить ЭВМ, сменилась разочарованием в связи с абсолютной непригодностью получаемых текстов. Приведем в качестве примера результаты работы одной из современных коммерческих систем перевода. Предложим ей перевести народное английское стихотворение, известное нам в переводе "Робин-Бобин" (текст этот очень простой, московские дети изучают его в начальной школе):

Robin, Robin, what a man!
He eats as much as no one can.
He ate a lot of fish, he ate a lot of meat.
He ate a lot of ice-cream and a sweet.
He ate a lot of porridge and ten eggs
And all the cookies Mother had.
He drank a lot of juice, he ate a cake
Then said: "I have a stomach-ache"

Малиновка, Малиновка, какой человек!
Он ест насколько никто не может.
Он съел много рыб, он съел много мяс.
Он съел много ледяных-сливки и сладкий.
Он съел много каша и десять яйцо
И вся Мать повары имела.
Он пил много соков, он съел торт
Затем сказал: "У меня есть желудок- боль"

Сравним с художественным переводом К.Чуковского:

Робин Бобин Барабек
Скушал сорок человек.
И корову, и быка,
И кривого мясника,
И телегу, и дугу,
И метлу, и кочергу.
Скушал церковь, скушал дом,
И кузницу с кузнецом,
А потом и говорит:
– У меня живот болит!

Следующий пример показывает неустойчивость системы машинного перевода при обработке неоднозначностей. Два предложения по отдельности "Flyer flies." и "Flyers fly." переводятся "Летчик летает." и "Летчики летают.", если же из тех же словосочетаний составить одно предложение "Flyer flies and flyers fly" получаем "Летчик летает и муха летчиков.".

Конечно, системы, настроенные на определенную предметную область, дают гораздо более приемлемые результаты. Однако в этом случае системы перевода получаются очень узко ориентированными, и попытка использовать их даже в смежных предметных областях дает совершенно непредсказуемые результаты. Подобные эксперименты даже распространены среди любителей пошутить: инструкция по эксплуатации манипулятора-мыши, переведенная с английского языка на русский системой автоматического перевода, использующей специализированный медицинский словарь, превращается в описание всевозможных издевательств над несчастным маленьким грызуном.

Возникают эти проблемы из-за принципиально разных подходов к переводу человека и машины. Квалифицированный переводчик понимает смысл текста и пересказывает его на другом языке словами и стилем, максимально близкими к оригиналу. Для компьютера этот путь выливается в решение двух задач: 1) перевод текста в некоторое внутреннее семантическое представление и 2) генерация по этому представлению текста на другом языке. Поскольку не только не решена сама по себе ни одна из этих задач, а нет даже общепринятой концепции семантического представления текстов, при автоматическом переводе приходится фактически делать "подстрочник", заменяя по отдельности слова одного языка на слова другого и пытаясь после этого придать получившемуся предложению некоторую синтаксическую согласованность. Смысл при этом может быть искажен или безвозвратно утерян.

Более реалистичными являются попытки создать системы автоматизированного перевода - программы, которые не берут на себя полностью весь перевод, а лишь помогают человеку-переводчику справиться с некоторыми трудностями (Computer Aided Translation). Одним из примеров таких систем является Eurolang Optimizer. Его можно рассматривать как нечто переходное между компьютерным словарем и программой-переводчиком, как некий набор предметно-ориентированных глоссариев, снабженный интерфейсом для удобства переводчика: предлагается несколько вариантов перевода, выделенные разными цветами в зависимости от условий применимости; переводчик может с помощью меню определенным образом настраивать словари для более быстрого и правильного выбора нужного эквивалента.

Подобные программные средства могут помочь в решении проблем, связанных с терминологией и вообще со знаниями переводчика о предметной области: одни и те же слова могут по-разному переводиться в зависимости от того, о каком предмете идет речь.

Автоматически может быть решена проблема согласованности. Понятно, что согласованность важна в рамках одного документа: один и тот же термин, даже если его без потери смысла можно перевести несколькими словосочетаниями, должен переводиться одинаково на протяжении всего документа. Однако еще более важной является согласованность в широком смысле - разработка и применение единой концепции интерпретации одного и того же термина на разных языках (скажем, американский разработчик программного обеспечения может быть недоволен, что термин dialog box переводится на итальянский как finestra (окно) и как boite (коробка, ящик) на французский). Ошибки, возникающие вследствие нарушения согласованности, являются серьезной проблемой, так как, имея только текст-результат перевода, уже невозможно установить, какие термины в оригинале были одинаковыми, а теперь переведены по-разному (в отличие от орфографических ошибок, которые исправить никогда не поздно).

Назад 1 2 3 4 5 ... 15 Вперед
Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*