Евгений Федосов - Полвека в авиации: записки академика
В этой совместной работе нам пришлось практически заново создавать все программное обеспечение для управляющих бортовых цифровых машин и разрабатывать систему управления самолетным оборудованием (электронный бортинженер). Это была интеллектуальная собственность России. Но Махачек требовал безвозмездной передачи всего программного обеспечения на фирму, хотя, согласно генеральному соглашению, эта работа проводилась силами наших специалистов и финансировалась российской стороной. Тогда Махачек создал в Москве инженерный центр фирмы «Коллинз» и переманил в него группу наших инженеров, пользуясь возможностью дать им зарплату, которую мы конечно не могли платить им в институте. Это был шаг, недопустимый между партнерами.
Я боролся против таких действий Махачека, обращался к К. Джонсу, просил руководство ОКБ им. С. В. Ильюшина занять решительную позицию, но все было безрезультатно — инженерный центр был создан. Роль его практически сводилась только к одному — получить интеллектуальный продукт ГосНИИАС бесплатно.
В современной авионике при продаже комплекта приборов стоимость собственно оборудования не превышает 30–40 процентов, а стоимость программного продукта — 60–70. Поэтому, естественно, получить бесплатно программное обеспечение для Махачека было заманчиво. То, что это неэтично, Махачека не остановило.
Надо сказать, что руководство ОКБ им. С. В. Ильюшина (генеральный директор В. В. Ливанов и заместитель генерального конструктора, отвечающий за этот самолет, В. И. Терентьев) так и не заняло твердой позиции в этом вопросе.
К лету 1997 года мы закончили отработку комплекса авионики и установили его на первом экземпляре самолета, построенного на Воронежском авиационном заводе. Летные испытания прошли успешно. Начался процесс сертификации самолета в ФАА. Для этого между ФАА и нашим Авиарегистром было подписано двухстороннее соглашение, позволяющее ФАА учесть объемы сертификационных испытаний, проводимых Авиарегистром. Да, собственно, это были больше формальные вопросы. Самолет Ил-96 имел достаточно большой налет часов в эксплуатации. Нормы летной годности, принятые в Авиарегистре, по существу, повторяли международные нормы. Поэтому вопросов по планеру практически не было. Двигатели фирмы «Пратт-Уитни» были сертифицированы в составе ряда самолетов фирмы «Боинг» и «Эрбас Индастри». Приборы фирмы «Коллинз» также были сертифицированы в составе самолета «Боинг-747». Единственно новыми и не прошедшими детальной проверки были программное обеспечение и система «электронный бортинженер», разработанные нашим институтом.
Надо сказать, что основой процесса сертификации на Западе, в отличие от России, является сертификация технологий, по которым работает производитель, а не самого продукта, и в первую очередь то, как у него организована система управления качеством. Поэтому ФАА специально наняла экспертов из английской фирмы, которые приехали в ГосНИИАС и в течение нескольких месяцев изучали весь процесс создания программного обеспечения в институте. Так как мы досконально изучили опыт фирмы «Коллинз» и, как я уже отмечал, работали как единая команда, то, естественно, наши технологии были идентичны технологиям, принятым на Западе. В результате стенд самолета Ил-96Т и лаборатория были сертифицированы английскими специалистами.
Основой сертификации являлась верификация всего программного обеспечения. Это был достаточно рутинный процесс, но очень трудоемкий и занимающий много времени. Но от нас требовали провести верификацию к августу 1997 года. Это можно было выполнить только при условии привлечения дополнительных специалистов и организации трехсменной работы на стенде. И при этом нужно было платить не менее 500 долларов в месяц. Это были ничтожные деньги на фоне тех затрат, которые шли на отработку этого самолета. Я обратился к В. В. Ливанову с просьбой оплатить эти работы, но не получил поддержки. Ливанов согласился доплатить нашим специалистам небольшие суммы в пределах 1000 рублей к той зарплате, которую они получали. Организовать трехсменную работу не удалось, тем более привлечь дополнительные силы. Все это привело к затяжке сроков. Одновременно ОКБ им. С. В. Ильюшина внесло изменения в алгоритмы управления по результатам летных испытаний, и пришлось отрабатывать еще одну версию программного обеспечения.
В конце концов к апрелю 1998 года окончательная версия программного обеспечения с материалами ее верификации была передана в инженерный центр фирмы «Коллинз», который должен был передать материалы в США для предоставления в ФАА. Этот процесс затянулся до августа 1998 года, но в конце концов сертификат был получен. Это был первый международный сертификат, который получил российский самолет такого класса. Дальний магистральный самолет относится к классу самых сложных в техническом отношении самолетов гражданской авиации. Казалось бы, путь на рынок был открыт. Но дефолт, который объявило правительство Кириенко в августе 1998 года, сломал все. Эксимбанк отказался подтвердить кредит для первой партии самолетов, да и Аэрофлот в лице его генерального директора Окулова (кстати, зятя президента Ельцина) также потерял интерес к этому самолету, так как США, обещая кредит в миллиард долларов на программу самолета Ил-96М/Т, потребовали взять в лизинг самолеты фирмы «Боинг», причем освободить их от таможенных сборов. Россия выполнила эти условия. Аэрофлот, получив самолеты от «Боинга», вместе с Эксимбанком отказались от своих обязательств. Так еще раз были преданы интересы авиационной промышленности России.
Правительство никак не прореагировало на сложившуюся ситуацию. Если самолет был бы сертифицирован на год раньше, возможно, этого бы не произошло.
Таким образом, Россия упустила шанс войти в международный рынок гражданской авиации.
Работая над системами для боевой авиации, мы много внимания уделяли управлению группами самолетов, особенно при перехвате воздушного противника, групповом воздушном бое или в операции прорыва ПВО. Поэтому после организации работ по авионике гражданских самолетов мы обратили внимание на проблемы управления воздушным движением. Мы решили найти свою нишу и в этом секторе рынка гражданской авиации. В какой-то мере здесь сказалось и влияние Татьяны Григорьевны Анодиной, которая была руководителем Научно-экспериментального центра управления воздушным движением (НЦ УВД). Впоследствии этот центр получил статус научно-исследовательского института. Татьяна Григорьевна, безусловно, яркая личность. Она стояла у истоков создания систем управления воздушным движением в СССР, пройдя довольно трудный путь от рядового инженера до руководителя целого направления. Доктор технических наук, профессор, Т. Г. Анодина в настоящее время много сил отдает проблеме УВД, являясь одновременно руководителем Международного авиационного комитета (МАК).
Где-то в конце 80-х годов она обратилась ко мне с просьбой помочь ее институту создать имитационную модель воздушных перевозок в СССР, включающую модели реальных трасс, аэропортов, технических средств УВД и т. д. Подобная модель была необходима для формирования единой системы планирования воздушного движения. В СССР, да и теперь в России, такой системы планирования практически не было. Если рассматривать систему УВД в крупном плане, то ее можно условно разбить на две составляющие: управление воздушным движением в зоне аэропорта, где идут процессы взлета, посадки самолета, движения по рулежным дорожкам, по взлетной полосе и т. д., и управление при полете на специально выделенных в воздушном пространстве коридорах — воздушных трассах. Воздушное пространство разбито на зоны, связанные с крупными территориями. Есть Северо-Западная зона (Санкт-Петербург), Центральная зона (Москва), Северо-Кавказская зона (Ростов) и т. д. В зонах находятся центры УВД, которые оборудованы первичными и вторичными радиолокаторами, системами связи между самолетами и центром («земля — воздух»), между центрами УВД («земля — земля») и диспетчерскими пунктами. Первичные радиолокаторы обнаруживают и сопровождают воздушные суда независимо от их государственной принадлежности и, как правило, входят в радиотехнические соединения ПВО страны. Вторичные радиолокаторы принадлежат службам УВД и сопровождают воздушные суда уже не по отраженному сигналу, а по сигналу радиоответчика, расположенного на борту самолета. Этот сигнал, обладая достаточной мощностью, обеспечивает устойчивое слежение и кроме того несет определенную служебную информацию. Основная функция радиолокаторов — получать текущие координаты самолета (высота — эшелон полета, курс, скорость).
Диспетчер на индикаторах кругового обзора в диспетчерском пункте, благодаря радиолокации, видит всю воздушную обстановку и имея связь с самолетами, может управлять ими, отдавая команды на смену эшелона, курса и т. д. В зоне аэропорта в систему УВД встроена и подсистема ближней навигации, которая управляет всем режимом взлета и посадки. Особенно важно управление посадкой с учетом возможной погодной обстановки и. видимости взлетной полосы на аэродроме. Обычно видимость определяется нижней кромкой облачности. Самолет выводится на полосу системой ближней радионавигации, а последний этап посадки на полосу обычно берет на себя пилот. Но для этого он должен видеть полосу. Так вот, степень автоматизации режима посадки и определяет I, II, III категорию посадки. Третья категория предполагает полностью «слепую» посадку, когда пилот практически не видит полосу и производит посадку по приборам. Надо сказать, что проблема автоматизации посадки решена очень давно, но пилот, находясь в кабине, психологически не может доверить посадку самолета с сотнями пассажиров на борту бездушной автоматике. А если аппаратура откажет? Когда в 60-е годы впервые отрабатывалась система автоматической посадки, опытные летчики-испытатели Летно-исследовательского института им. М. Громова никак не могли отделаться от желания взять штурвал самолета «на себя» в момент касания колес самолета бетонной полосы, хотя им многократно демонстрировали записи автоматического режима посадки, которые уверенно показывали, что автомат «сажает» самолет более плавно, чем летчик. Но ничего не помогало. Инстинкт самосохранения срабатывал, и летчик брал штурвал на себя. Вскоре этот психологический барьер был преодолен. Летчик был включен в «контур» управления и производил посадку вручную, но это был виртуальный процесс. То есть в случае отсутствия видимости полосы самолет совершал посадку автоматически, а летчику создавали видимость полосы искусственно.