KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Техническая литература » Станислав Зигуненко - 100 великих достижений в мире техники

Станислав Зигуненко - 100 великих достижений в мире техники

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Станислав Зигуненко, "100 великих достижений в мире техники" бесплатно, без регистрации.
Перейти на страницу:

И вот вам последнее известие с фронта научных исследований. Создана модель «плаща-невидимки», который действительно может скрыть объект от человеческого глаза. В отличие от предыдущих версий «магического» покрытия, работавших в инфракрасном диапазоне, новый «плащ» эффективен в области длин волн, соответствующих видимому свету, сообщает журнал Nano Letters.

Ученые из Университета Калифорнии в Беркли (США) летом 2011 года сообщили о создании защитного покрытия, способного делать объекты невидимыми во всем диапазоне длин волн видимого света. Предыдущие попытки создания «невидимости» использовали в основном метаматериалы на основе металлов. Однако такой состав оказался неприемлемым при приближении к видимому диапазону длин волн, поэтому, как пояснила профессор Мичиганского университета Елена Семушкина, ряд групп обратились к созданию диэлектрических «плащей-невидимок». Они не имеют проводящих свойств металлов и больше похожи на стекло.

Еще один вариант, предложенный специалистами из Бирмингема, – использование для «плащей-невидимок» материалов из так называемых одноосных кристаллов. Для таких кристаллов характерно двойное лучепреломление при всех направлениях падающего на них света, кроме одного (это направление называется оптической осью кристалла). Материалы на одноосных кристаллах позволяли «прятать» микрообъекты от видимого света, однако лишь в случае его особой поляризации. Усовершенствование этой технологии позволило эффективно скрывать относительно большие объекты (размером около 300 нм на 6 мкм) под отражающим «защитным покрытием».

Говоря проще, такое покрытие представляет собой гладкое оптическое зеркало, которые скрывает объект в видимом диапазоне длин волн. «Вы, словно фокусник, прячете объект под особым материалом, который внешне выглядит как обычное зеркало – сквозь него не видно объекта, находящегося внизу. Внешний наблюдатель и не предполагает, что под зеркалом что-то находится», – пояснил суть дела профессор Сян Чжан, под руководством которого выполнялась работа.

Чтобы заставить видимый свет «обойти» спрятанный объект, исследователи изобрели материалы с переменным показателем преломления – это метаматериалы, не существующие в природе. Для этого волновод из нитрида кремния поместили на прозрачную нанопористую подложку оксида кремния, которая имела меньший показатель преломления, чем волновод. «Это первый пример “шапки-невидимки”, действительно работающей в видимом диапазоне длин волн», – подчеркнул Чжан.

Путешествия к центру Земли

Помните, как совершили путешествие в глубь Земли герои Жюля Верна? Расшифровали таинственную записку, спустились в древний кратер и подземными ходами добрались куда хотели…

На самом деле даже через самую глубокую пещеру нельзя попасть к ядру планеты. А потому ученые осуществляют «путешествия к центру Земли» иными способами. Одни из них изобретают разного рода подземные лодки, капсулы и буровые снаряды. Другие же вообще не выходят из своих лабораторий и тем не менее ухитряются узнать, что именно происходит в недрах Земли на глубинах в десятки и даже сотни километров.

Как именно они это делают? Вот что рассказал о работе своих коллег директор Института физики высоких давлений имени Л.Ф. Верещагина, член-корреспондент РАН С.М. Стишов.

«Исследователи давно пытаются заглянуть в недра нашей планеты, – начал свой рассказ Сергей Михайлович Стишов. – Однако даже сверхглубокая скважина на Кольском полуострове не позволила проникнуть в глубь Земли далее 12 км – чудовищные давления и температуры не дают бурить дальше. Поэтому пришлось использовать обходные способы, а именно смоделировать условия земных недр»…

Новокраматорский пресс-гигант в Институте физики высоких давлений

Каким образом? Вот вам одно любопытное описание: «Мы стояли, держась за поручни стального ограждения лестницы, которая, как в пропасть, уходила в глубь громадного бетонного “колодца”. В нем, наверное, свободно бы разместился многоэтажный жилой дом. Когда глаза привыкли к полумраку, можно было рассмотреть детали циклопической конструкции, которая тянулась вверх с бетонного днища»…

Думаете, это цитата из фантастического романа? Вовсе нет. Таким увидел четверть века тому назад самый большой пресс СССР репортер одной из центральных газет.

Разместили пресс в здании, напоминающем своими размерами зимний стадион: длина строения – 84 м, ширина – 36, высота – 30 м.

И сама махина весом 5000 т будто бы прибыла из страны великанов. Один лишь цилиндр «поршня», с помощью которого пресс мог развивать усилие в 50 000 т, а давление в 3 млн атмосфер, имел массу в 60 т и высоту в два человеческих роста.

На нашей планете есть еще несколько прессов примерно такой же мощности, но они построены для промышленных целей. А этот гигант единственный, что был создан специально для ученых на Ново-краматорском машиностроительном заводе.

Этим достижением в немалой степени гордился тогдашний директор Института физики высоких давлений академик Леонид Федорович Верещагин. Ведь ему приходилось начинать свои исследования на куда более скромном оборудовании. Первый пресс, на котором Верещагин вместе с двумя научными сотрудниками и одним механиком получил еще до войны рекордное для нашей страны давление – 10 тыс. атмосфер, – занимал всего лишь угол скромной лаборатории.

Впрочем, сейчас в институте тоже больше не увидишь прессов-гигантов. И не только потому, что у нашей науки теперь нет средств на их создание. Огромные давления ученые научились получать более скромными средствами.

Знаете ли вы, например, что любой из читающих эти строки способен буквально пальцами развить давление около 3 т… Каким образом? Для этого надо лишь взять в руки иглу и силой воткнуть ее в какой-либо материал. Давление, развиваемое при этом на кончике иглы, и даст искомую величину.

Примерно так концентрируют усилия современные исследователи. В рабочей камере гидравлического пресса на острие алмазной наковальни они получают такие же давления, как на глубине в сотни и даже тысячи километров.

А когда мощи гидравлики становится недостаточно, призывают на помощь удар или даже взрыв. Именно с помощью взрывов, проводимых опять-таки в особых камерах, еще в 50-х годах прошлого века были получены из графита первые промышленные алмазы. Сейчас технологи научились получать алмазные зерна величиной до 5 каратов, широко используют их в алмазных инструментах для обработки особо твердых сплавов и материалов.

«Благодаря методам исследования, созданным в нашем институте совместно с фондом Карнеги в Вашингтоне, проведена серия исследований свойств серы при высоких давлениях, – продолжал свой рассказ Стишов. – Оказалось, что этот химический элемент, в обычном состоянии представляющий собой почти идеальный диэлектрик, под давлением переходит в металлическое состояние со сверхпроводящими свойствами, сохраняющимися до температуры примерно в 16 К. При этом изменяется даже цвет элемента. Желтая сера становится красной и, наконец, чернеет, превращаясь при этом в металл. Эта работа имеет большое фундаментальное и практическое значение. Возможно, что с помощью металлической серы будут создано новое поколение сверхпроводящих сплавов, работающих при высоких температурах»…

Сейчас исследователи готовятся к следующему шагу в познании глубинных тайн Земли. Исследователи вскоре получат возможность узнать, как ведут себя различные вещества при тех давлениях, которые царствуют в самом центре Земли. Эта проблема чрезвычайно важна с познавательной точки зрения. Разведочные сейсмические волны показывают, что в глубинах залегают плотные вещества. Какие?

Об этом шел многолетний спор. Многие исследователи считали, что ядро Земли слагают породы с очень богатым содержанием железа. Причем одни полагали, что ядро это жидкое, другие считали его твердым, сдавленным чудовищными давлениями. Истина, пожалуй, в золотой середине.

«Если бы ядро Земли было жидким, то процессы, происходящие внутри нашей планеты, напоминали бы скорее атмосферные явления – смерчи, торнадо и другие “завихрения”, – подчеркнул директор Института физики высоких давлений. – Однако на практике мы видим большее сходство этих процессов с океаническими – тихими, плавными и спокойными»…

В общем, по мнению Стишова и его коллег, ядро нашей планеты по вязкости напоминает застывающее стекло или… густой мед! Они уверены в этом процентов на восемьдесят. Более точные выводы можно будет сделать, когда ученые смогут создать в лаборатории условия, сравнимые с реально существующими в недрах планеты. Пока же экспериментальные давления меньше тех, что существуют в ядре Земли примерно на порядок.

Кроме того, очередные эксперименты, бесспорно, дадут много новых сведений о возможном состоянии вещества не только в ядре нашей Земли, но и в недрах Юпитера, Сатурна и других планет.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*