KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Техническая литература » Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии

Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Владо Дамьяновски, "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии" бесплатно, без регистрации.
Перейти на страницу:

После того как жесткий диск был отформатирован на низком уровне, требуется произвести высокоуровневое форматирование, которое помещает на диск файловую систему, что позволяет операционной системе, такой, как Windows или Linux, использовать доступное пространство для хранения файлов.

Различные операционные системы используют разные файловые системы, поэтому высокоуровневое форматирование определяется используемой операционной системой.



Рис. 9.60. Разбивка жесткого диска на разделы (партиции)


Если мы форматируем весь жесткий диск только под одну файловую систему, то это автоматически ограничивает количество и типы операционных систем, которые могут быть установлены на него. Но если мы разбиваем диск на несколько разделов (партиций), то каждый из разделов может быть отформатирован под разные файловые системы, что позволит установить на один жесткий диск несколько разных операционных систем. Кроме того, разбивка жесткого диска на разделы позволяет использовать дисковое пространство более эффективно.

Для того чтобы считывать или записывать данные, головка жесткого диска должна быть позиционирована над нужной дорожкой вращающейся магнитной пластинки. Те значения времени поиска (seek time), которые указывают производители жестких дисков, обычно учитывает еще и время, нужное для того, чтобы магнитная головка перестала вибрировать после перемещения (время стабилизации, settling time).

Затем учитывается время, которое потребуется, чтобы нужный сектор оказался под магнитной головкой (задержка вращения, rotational latency). Современные диски используют позиционирование с ускорением, это означает что, получив команду сменить дорожку, магнитная головка начинает ускоряться до тех пор, пока она не пройдет половину пути до искомой дорожки, затем до подхода к нужной дорожке происходит замедление. Поэтому среднее время поиска всего лишь в несколько раз больше минимального времени поиска. Максимальное время поиска обычно примерно в два раза больше среднего времени поиска, поскольку головка достигает максимальной скорости перемещения, прежде чем дойдет до средней дорожки. Минимальное время поиска дорожки — это время, которое тратится на перемещение головки на соседнюю дорожку. При чтении больших блоков информации, как, например, при считывании архивных записей нашим цифровым видеорегистратором, именно этот параметр будет определять производительность жесткого диска. Среднее время доступа более важно при произвольном считывании небольших объемов информации (например, при перемещении по дереву директорий).

Время доступа складывается из времени переключения между головками, времени поиска нужной дорожки, задержки вращения и времени считывания сектора. Большее количество головок сокращает время, уходящее на механическое позиционирование на новую дорожку. При повышении скорости вращения увеличивается максимальная скорость передачи данных и сокращается задержка вращения, которая представляет собой дополнительное время ожидания появления нужного сектора под магнитной головкой. Приведенная таблица показывает различия между жесткими дисками с разной скоростью вращения и максимальную скорость передачи данных (на этом мы остановимся чуть позже), которая является самым важным параметром, отвечающим за то, какой максимальный объем информации мы можем записать на жесткий диск за единицу времени.

(Задержка вращения в данном случае рассчитывалась следующим образом. Например, для 7200 об/мин скорость вращения (7200) делится на 60 секунд = 120 об/сек и берется обратное значение, но это будет максимальная задержка вращения… Когда же говорят об этом параметре, то очень часто подразумевается среднее значение. Так как время ожидания случайного сектора будет иметь равномерное распределение, то средняя задержка вращения будет равна половине максимальной. Прим. ред.)



* Высокая скорость вращения требует дополнительного охлаждения жесткого диска


Для каждого жесткого диска определена скорость вращения, которая выражается в оборотах в минуту (revolutions per minute, rpm, об/мин). Этот параметр, кстати, дает очень хорошее представление о производительности жесткого диска. Жесткие диски для настольных ПК обычно имеют 5400 об/мин или 7200 об/мин. При этом жесткие диски с 7200 об/мин работают на 10 % быстрее дисков с 5400 об/мин, но они и дороже на 10–30 %. Старшие серии моделей жестких дисков, которые имеют 10,000 об/мин или 15,000 об/мин, позволяют добиться лишь незначительного прироста в производительности, а их стоимость будет отличаться значительно и в большую сторону, так как в большинстве случаев они имеют SCSI-интерфейс и функции для повышения надежности. Кроме того, высокая скорость вращения шпинделя жесткого диска требует большего энергопотребления, что приводит к большему нагреву жестких дисков. Охлаждение очень важно для всех жестких дисков, но особенно важно оно именно для дисков с высокой скоростью вращения. Таким образом, для обычного цифрового видеорегистратора жесткие диски со скоростью вращения 5400 или 7200 об/мин будут вполне приемлемы и окажутся удачным компромиссом между достаточной скоростью и разумной стоимостью.

Если два жестких диска имеют одинаковую скорость вращения шпинделя, то предпочтительнее окажется тот из них, у которого время поиска меньше. Разница во времени поиска, которая варьируется от 3.9 миллисекунды для сверхбыстрых жестких дисков со SCSI-интерфейсом до 12 миллисекунд у более медленных дисков с IDE-интерфейсом, может быть заметна при работе с большими базами данных, когда головки жесткого диска «бегают» по всем дорожкам, но это также будет заметно при поиске архивных записей в цифровом видеорегистраторе по событиям или по времени записи.



Рис. 9.61. Расположение загрузочных областей


Кэш-память (cache) — это еще один параметр, который характеризует жесткий диск. Он обозначает объем внутренней памяти жесткого диска. Предназначенная для того чтобы сократить количество обращений к жесткому диску, кэш-память содержит комбинацию часто запрашиваемой и недавно запрошенной с диска информации. Большой объем кэш-памяти в целом позволяет повысить производительность жесткого диска, когда к нему одновременно обращаются несколько пользователей. Хотя незначительная разница в объеме кэш-памяти не имеет большого значения для производительности, малый объем кэш-памяти говорит о том, что мы столкнулись со старым и медленным жестким диском. Операционные системы стараются повысить общую производительность, сокращая избыточную активность жесткого диска. Для этого наиболее часто используемые данные помещаются в оперативную память, что сильно сокращает количество обращений к жесткому диску. Запись новых данных тоже может производиться с задержкой, в более удобное для этого время. Существуют и другие способы сокращения обращений к жесткому диску. Например, при буферизации дорожки жесткого диска, при задержке вращения считываются все сектора этой дорожки в ожидании появления нужного сектора под магнитной головкой, так как с большой долей вероятности они потребуются сразу после чтения нужного сектора. В современных жестких дисках буферизацией дорожек занимается кэш-память встроенного контроллера диска.

Современные жесткие диски имеют кэшпамять объемом от 2 до 4 Мбайт для буферизации дорожек, что убирает задержку вращения. Некоторые жесткие диски высокого класса имеют 8 или даже 16 Мбайт кэш-памяти. Впрочем, скорость вращения по-прежнему ограничивает максимальную скорость передачи данных.



Рис. 9.62. Жесткие диски большого объема обычно имеют несколько головок и пластинок


Несмотря на «умную» электронику, которая позволяет повысить производительность жестких дисков, в первую очередь она определяется именно механическими характеристиками накопителя. По этой причине факторы, влияющие на производительность механических частей жесткого диска, также будут влиять на его надежность и срок службы. Высокая температура, пыль, влажность, сотрясения, вибрации могут послужить причиной поломки жесткого диска. Наиболее частыми причинами сбоев жесткого диска, с которыми мы сталкиваемся на практике в видеонаблюдении, являются перегревы и пыль.

Не будет преувеличением, если мы скажем, что жесткие диски в некоторых цифровых видеорегистраторах эксплуатируются более интенсивно, чем жесткие диски во многих интернет-серверах. К сожалению, культуре обращения с оборудованием у пользователей цифровых видеорегистраторов далеко до пользователей, устанавливающих корпоративные серверы и интернет-серверы. С цифровыми видеорегистраторами очень часто обращаются так, словно стремятся от них поскорее избавиться, устанавливая их в помещениях с минимальной вентиляцией, где много пыли и высокая влажность. При проектировании систем видеонаблюдения мы всегда должны настаивать, чтобы с жесткими дисками обращались, как если бы они были установлены в корпоративном сервере.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*