Коллектив авторов - История электротехники
Л. Гальвани сделал правильное предположение о том, что сокращение мышц вызывается действием электрических сил, что мышцы и нервы образуют как бы две обкладки лейденской банки. Но нужно было решить очень важный вопрос: как и где во всех этих опытах возникает электричество? Ни железная пластинка, ни медный крючок, соприкасавшиеся с телом лягушки, не могли, по представлениям физиков того времени, служить источником электричества, так как на металлы смотрели только как на проводники, считая, что они могут становиться «электрическими» лишь через прикосновение к другим, наэлектризованным телам; тогда оставалось предположить, что таким источником является сама лягушка. Все это создавало почву для представлений о существовании особого — «животного» электричества; такую мысль и высказал Л. Гальвани для объяснения наблюдавшихся им фактов. Этому предположению Л. Гальвани придал форму теории, изложенной в упомянутом «Трактате о силах электричества при мышечном движении». Тело животного являлось, согласно взглядам Л. Гальвани, своеобразной лейденской банкой, способной на непрерывное повторное действие.
Опыты Л. Гальвани вызвали большой интерес. Среди физиологов стала еще больше, чем ранее, укрепляться мысль об электричестве как удивительном новом средстве для исцеления. Что касается физиков, то их взгляды на явления, наблюдавшиеся Л. Гальвани, разошлись. Одни соглашались с Л. Гальвани и считали, что «гальваническое», или «животное», электричество имеет совершенно иную природу, чем электричество трения; другие отождествляли оба вида электричества; наконец, третья группа физиков оспаривала вообще существование «животного» электричества. К этой группе принадлежал профессор физики в Павийском университете Алессандро Вольта.
2.2. СОЗДАНИЕ ПЕРВОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА
В течение нескольких лет (1792–1795 гг.) А. Вольта не только повторил все опыты Л. Гальвани, но и произвел ряд новых исследований. И если Л. Гальвани искал причину обнаруженных им явлений как физиолог, то А. Вольта, будучи физиком, искал в них физические процессы [1.1; 1.6; 1.12; 1.13].
А. Вольта прежде всего обратил внимание на факт, уже известный Л. Гальвани, что сокращения мышц наиболее интенсивно происходят при использовании двух разнородных металлов. Продолжая исследования, он отверг идеи Л. Гальвани о «животном» электричестве и пришел к выводу, что источником электричества является контакт двух разнородных металлов: «Металлы не только прекрасные проводники, но и двигатели электричества», — утверждал А. Вольта. А «… лягушка, приготовленная по способу Гальвани, есть чувствительнейший электрометр» [1.1; 1.2].
Обобщением исследований А. Вольта была предложенная им теория «контактного электричества». Эта теория утверждала, что при соприкосновении различных металлов происходит разложение их «естественного» электричества; при этом электричество одного знака собирается на одном металле, а другого — на другом. Силу, возникающую при контакте двух металлов и разлагающую их «естественное» электричество, А. Вольта назвал электровозбудительной, или электродвижущей силой; эта сила «перемещает электричество так, что получается разность напряжений» (между металлами. — Авт.) [1.2].
Произведя исследование этого вопроса при помощи созданного им весьма чувствительного прибора — электроскопа с конденсатором, А. Вольта установил, что металлы можно распределить в некоторый ряд, в котором «разность напряжений» между двумя металлами будет тем больше, чем дальше они расположены один от другого.
С современной точки зрения совершенно очевидна ошибочность идеи Вольта о возможности получения электрического тока посредством простого контакта разнородных металлов, т.е. получения электрической энергии без затраты для этого какого-либо другого вида энергии. Однако в начале прошлого века эта теория контактного электричества нашла много сторонников и на некоторое время удержалась в науке.
Многочисленные эксперименты привели А. Вольта к выводу, что непрерывный электрический «флюид» может возникнуть лишь в замкнутой цепи, составленной из различных проводников — металлов (которые он называл проводниками первого класса) и жидкостей (названных им проводниками второго класса).
Опыты А. Вольта завершились построением в 1799 г. первого источника непрерывного электрического тока, составленного из медных и цинковых кружков (пар), переложенных суконными прокладками, смоченными водой или кислотой. Этот прибор, о котором он впервые сообщил президенту Лондонского королевского общества в марте 1800 г., был назван им «электродвижущим аппаратом», а позже французы стали его называть «гальваническим или вольтовым столбом» (рис. 2.1).
Рис. 2.1. Вольтов столбНеобходимость применения проводников второго класса (суконных кружков, смоченных водой или кислотой) А. Вольта объяснял следующим: при соприкосновении двух различных металлов электричество одного знака сосредоточивается на одном металле, а электричество противоположного знака — на другом. Если составить столб из нескольких пар различных металлов, например цинка и серебра (без прокладок), то каждая цинковая пластина будет находиться в соприкосновении с одинаковыми серебряными пластинами и их общее действие будет взаимно уничтожаться. Для того чтобы действие отдельных пар суммировалось, необходимо обеспечить соприкосновение каждой цинковой пластинки только с одной серебряной. Это осуществляется с помощью проводников второго рода — суконных кружков, смоченных водой или кислотой, разделяющих пары металлов и не препятствующих движению электричества. Таким образом, А. Вольта, не понимая того, что электрический ток возникает в результате химических процессов между металлами и жидкостями, практически пришел к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую. Хотя А. Вольта и заметил, что поверхности приведенных в контакт разнородных металлов, составляющих гальваническую пару, подвергаются изменению — окисляются, тем не менее он не придал этому факту никакого значения.
Рис. 2.2. Чашечная батарея ВольтаА. Вольта предложил кроме столба еще и несколько иную конструкцию источника электрического тока — так называемую чашечную батарею (рис. 2.2), действие которой, по его мнению, также было основано на контакте между двумя металлами (влажную суконную прокладку столба заменяла жидкость). Чашечная батарея представляла собой соединение отдельных элементов, имевших форму банок, наполненных разбавленной серной кислотой, в которую погружались одна медная и одна цинковая пластины. Кроме предложенных А. Вольта конструкций источника электрического тока вскоре были разработаны некоторые другие его модификации.
Создание вольтова столба подготовило почву для закладки фундамента электротехники. Современник А. Вольта, выдающийся французский ученый академик Доменик Франсуа Араго (1786–1853 гг.) считал вольтов столб «самым замечательным прибором, когда-либо изобретенным людьми, не исключая телескопа и паровой машины». В этом определении нельзя усматривать преувеличения. Вольтов столб — это первый источник непрерывного электрического тока, сыгравший громадную роль как в развитии науки об электричестве, так и в расширении его практических приложений. Вольтов столб в различных своих модификациях долгое время оставался самым распространенным источником электрического тока. Как будет видно из последующего, крупнейшие ученые первой половины XIX в. В.В. Петров, X. Дэви, А. Ампер, М. Фарадей широко применяли вольтов столб для своих опытов.
Научный вклад итальянского ученого был высоко оценен его современниками. Легенды об А. Вольта ходили среди ученых уже при его жизни. Создав вольтов столб, А. Вольта подарил миру, как писал один из его биографов, «невиданный ранее источник электричества, не порциями, как от банок и электрофоров, а непрерывным потоком».
Заслуживают внимания трактат А. Вольта «Об идентичности гальванического и электрического флюидов», его высказывания о «сходстве» электричества и магнетизма.
Современники называли А. Вольта самым великим физиком, жившим в Италии после Галилея. В 1881 г. на Международном конгрессе электриков в Париже единице напряжения было присвоено наименование «Вольт».
2.3. ОБНАРУЖЕНИЕ И ИЗУЧЕНИЕ ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА
Первые же опыты с электрическим током[1] не могли не привести к открытию некоторых присущих ему свойств. Поэтому рассматриваемый период в истории электричества характеризуется главным образом обнаружением и изучением различных действий электрического тока. Исследования электрического тока, производившиеся в большом масштабе в первые годы XIX в., привели к открытию химических, тепловых, световых и магнитных его действий.