Карл Гильзин - Воздушно-реактивные двигатели
Вот летит скоростной реактивный бомбардировщик. На его крыле хорошо видны длинные сигарообразные тела с как будто срезанными концами (рис. 7). Это гондолы; в них установлены турбореактивные двигатели, которые создают тягу, необходимую для полета реактивного самолета.
Рис. 7. Реактивный бомбардировщик в полете
Как же создается эта тяга? Ответить на этот вопрос, наблюдая летящий самолет, нелегко: ведь воздух прозрачен и простым глазом не удается видеть происходящие в нем изменения.
Другое дело, если бы самолет совершал свой полет в описанном выше искусственном зеленом воздушном океане. Тогда мы увидели бы живописную картину, очень похожую на ту, при помощи которой мы познакомились с работой воздушного винта.
Попробуем проследить за происходящими в нашем зеленом океане явлениями, начиная с самого момента запуска двигателя. Вот турбореактивный двигатель начал работать, и безмятежный ранее зеленый океан заволновался. Как и к вращающемуся винту, к входному отверстию двигателя со всех сторон — сверху, снизу с боков — начали подтекать струйки воздуха, образуя темнозеленую воронку. Чем ближе к входному отверстию, тем темнее окраска воздуха; помните — это значит, что движение воздуха ускоряется. Следовательно, двигатель подсасывает воздух так же, как это делает воздушный винт. Образующаяся перед входным отверстием двигателя воронка, заметная в нашем зеленом океане по более темной окраске, и есть засасываемый в двигатель воздух. В стороне от этой воронки воздух неподвижен и окраска его там совсем светлозеленая. Все напоминает нам картину, виденную и при работе винта. Разница только в том, что воронка перед двигателем гораздо меньше по размерам, чем перед винтом. Это значит, что через двигатель в каждую секунду проходит воздуха значительно меньше, чем через винт.
Теперь посмотрим, что происходит у выходного отверстия двигателя, через которое засосанный в него воздух выходит в атмосферу.
Оказывается, и за двигателем картина также похожа на ту, которую мы наблюдали за вращающимся воздушным винтом. Из двигателя наружу вытекает мощная струя темнозеленого цвета. Ее окраска гораздо темнее, чем цвет воздуха за винтом. Следовательно, воздух, вытекающий из двигателя (точнее, не воздух, а газы, о чем будет сказано ниже), обладает значительно большей скоростью, чем воздух, отбрасываемый назад воздушным винтом.
Итак, мы убедились в том, что турбореактивный двигатель засасывает воздух из окружающей атмосферы и с большой скоростью отбрасывает его назад (рис. 8) точно так же, как это делает воздушный винт.
Мы пока смогли заметить только одно различие в работе винта и двигателя: воздушный винт отбрасывает ежесекундно значительно больше воздуха, чем турбореактивный двигатель (потому что диаметр воздушного винта больше), но зато турбореактивный двигатель отбрасывает газы со значительно большей скоростью.
Рис. 8. Турбореактивный двигатель создает тягу так же, как и воздушный винт, отбрасывая назад с большой скоростью засасываемый воздух (газы)
Правда, есть и еще одно весьма важное различие. Чтобы его заметить, нам нужно было бы воспользоваться другим искусственным воздушным океаном, таким, у которого цвет меняется при изменении не скорости, а температуры воздуха, — с ростом температуры окраска темнеет. Пусть это будет, например, красный воздушный океан. В этом случае мы установили бы, что цвет океана перед работающим винтом и за ним остается практически одинаковым — светлорозовым, так как температура воздуха, протекающего через прозрачный диск, образуемый воздушным винтом при его вращении, не изменяется. При работе турбореактивного двигателя дело будет обстоять иначе. В двигатель будет поступать светлорозовый поток воздуха, а из двигателя вытекать струя, окрашенная в темнокрасный цвет. Это значит, что температура струи гораздо выше, чем температура окружающей атмосферы. Это и понятно — вытекающие из двигателя газы, представляющие собой, как мы увидим ниже, перемешанные с воздухом продукты сгорания топлива, на котором работает двигатель, нагреты до температуры 600—700° С.
Поскольку турбореактивный двигатель непрерывно отбрасывает с большой скоростью газы, то, как и винт, он развивает тягу, необходимую для полета самолета.
Мы видим, что разница между тем, как создает тягу поршневой двигатель с винтом и турбореактивный двигатель, невелика — в обоих случаях тяга создается путем отбрасывания воздуха (для простоты в данном случае можно считать, что из реактивного двигателя вытекают не газы, а раскаленный воздух). Пожалуй, единственная существенная разница в том только и заключается, что винт отбрасывает много воздуха с малой скоростью, а реактивный двигатель — мало воздуха, но с большой скоростью.
Обычный самолет с поршневым двигателем и винтом оставил бы после себя в нашем зеленом океане широкую струю, целую реку воздуха, более темного по своей окраске, чем окружающий океан. Этот воздух двигался бы в сторону, противоположную полету, со сравнительно небольшой скоростью. Если же пролетит реактивный самолет с турбореактивным двигателем, то он оставит за собой сравнительно небольшую по сечению, но темнозеленую струю — это будет уже стремительный поток, мчащийся назад с большой скоростью. Исчезнут из поля зрения, скроются оба самолета, а в зеленом воздушном океане мы все еще будем видеть две темные струи, которые только постепенно размоются, слившись с окружающей средой.
Но если создавать тягу — значит отбрасывать воздух, то нетрудно определить и величину силы тяги, зная, сколько отбрасывается воздух и какую скорость он при этом приобретает. Ведь мы уже знаем, что сила толчка зависит именно от указанных двух величин, — так гласит один из основных законов механики — второй закон Ньютона. На основании этого закона сила тяги турбореактивного двигателя может быть определена по формуле
р = т (W — V),
где Р — сила тяги в кг;
т — отбрасываемая двигателем масса воздуха (газов) в кг * сек2 / м;
W — скорость воздуха (газов), вытекающего из двигателя м/сек;
V — скорость полета м/сек.
Эта формула пригодна, конечно, и для определения силы тяги, создаваемой воздушным винтом.
Мы видим, что тяга Р тем больше, чем больше масса отбрасываемого воздуха т и чем больше величина приращения скорости (W—V), которую получает воздух, проходя через двигатель (или винт). Ведь разность скоростей W — V и есть та скорость, с которой отбрасывается воздух (т. е. скорость, которую он приобретает в двигателе).
Так как т = G / 9,81, то формула для силы тяги часто пишется так:
где G — вес воздуха (газов), отбрасываемого за секунду, в кг/сек;
9,81 — величина ускорения свободно падающего тела в м/сек2.
Совершенно очевидно, что можно получить ту же тягу, отбрасывая вдесятеро меньшее количество воздуха, но сообщая ему вдесятеро большую скорость. Принципиального различия между этими двумя случаями нет.
Но между поршневым двигателем с винтом и турбореактивным двигателем существует глубоко принципиальное различие. Оно заключается в том, что поршневой двигатель сам по себе тяги не создает, а лишь вращает воздушный винт, который и служит для создания тяги, т. е. является движителем, а турбореактивный двигатель создает тягу непосредственно сам. В этом заключается одна из важнейших особенностей всех без исключения реактивных двигателей — они не нуждаются ни в каких движителях, так как создают тягу сами. Поэтому реактивные двигатели часто называют двигателями прямой реакции, отмечая этим то обстоятельство, что сами эти двигатели непосредственно, «прямо» создают реакцию, реактивную тягу.
Понятно, почему двигатели прямой реакции, предназначенные для того, чтобы развивать реактивную тягу, обычно и характеризуются величиной этой тяги; говорят: двигатель тягой 100 кг или двигатель тягой 1000 кг. Поршневые же двигатели, равно как и другие нереактивные двигатели, оценивают, как известно, по развиваемой ими мощности (двигатель мощностью 100 л. с. или двигатель мощностью 1000 л. с.).
Это основное отличие любого реактивного двигателя от любого другого двигателя (парового, двигателя внутреннего сгорания и т. д.) является очень глубоким. Любой из известных двигателей, кроме реактивного, может иметь широкое применение. Например, тот же поршневой авиационный двигатель внутреннего сгорания, установленный на самолете и приводящий во вращение воздушный винт, является действительно авиационным. Но его можно установить и на автомобиле — ведь поршневой авиационный двигатель отличается от обычных автомобильных двигателей главным образом своей большой мощностью. Известно, например, что на некоторых гоночных рекордных автомобилях устанавливались авиационные двигатели. Авиационный двигатель можно установить на танк — ему тоже нужна большая мощность. Впрочем, некоторые танковые двигатели являются очень близкими «родственниками» авиационных. Можно установить авиационный двигатель на быстроходном морском катере — и там нужна большая мощность и малый вес; двигатели этого «москитного флота» тоже обычно «родные братья» авиационных двигателей. Можно установить, при желании, авиационные двигатели и на гигантском теплоходе для привода во вращение его гребных винтов: ведь обычные двигатели теплоходов — тоже поршневые двигатели внутреннего сгорания, только гораздо более тяжелые. Можно установить авиационный поршневой двигатель и на железнодорожном локомотиве — тепловозе, и на тракторе, и на самоходном комбайне. Все это такие машины, на которых, как известно, поршневые двигатели внутреннего сгорания получили самое широкое распространение. Однако эти двигатели находят широкое применение не только в транспорте — воздушном, водном, наземном, но и в стационарных установках. Принципиально можно, например, установить авиационный двигатель на электростанции — он будет приводить во вращение генератор электрического тока. В этом случае мощность, развиваемая двигателем, будет преобразовываться в электрическую энергию. Электростанции с поршневыми двигателями внутреннего сгорания (не авиационными, конечно) имеют довольно широкое применение. Можно также установить поршневой авиационный двигатель и на заводе или фабрике, допустим, текстильной, и тогда мощность двигателя будет затрачиваться на привод в движение ткацких станков. Конечно, этот перечень можно было бы продолжить.