Александр Прищепенко - Шипение снарядов
…Непрост в экспериментальной физике переход от научной болтовни к практическим решениям. Вы знаете, что «стрелять» до бесконечности вам не позволят: и время, и финансирование ограничены всегда. Не верьте лжи, что перед опытом все было рассчитано: для устройства, созданного впервые, слишком многие параметры, необходимые для расчетов, сомнительны. Поэтому после арифметических вычислений (в крайнем случае — после решения простейшего дифференциального уравнения) от вас требуется твердо произнести что-либо вроде: «Рабочее тело в источнике излучения будем делать из монокристалла иодида цезия!». Основания для такого решения были следующими.
• Если конечный размер области сжатия — около десятка микрон, то фронт ударной волны должен быть очень гладким: с неровностями, размеры которых меньше размеров этой области. Вспомнилась статья об оптических исследованиях ударных волн в монокристаллах: С. Кормер утверждал, что фронт там «гладок, как зеркало», размер неровностей не превышает микрона. В любом случае, монокристалл — наиболее упорядоченная структура вещества — последняя надежда: если не выйдет в монокристалле, то не выйдет нигде!
• Этот монокристалл должен включать атомы с самым низким потенциалом ионизации, чтобы скачок проводимости в ударной волне был существенным. Значит — цезий.
• Этот монокристалл должен существовать в осязаемых размерах, не стоить бешеных денег, не быть ядовитым, и желательно, чтобы хотя бы некоторые его свойства были исследованы ранее.
Изготовить новые устройства (цилиндрические ударно-волновые излучатели, ЦУВИ, рис. 4.28) не заняло много времени…
Рис. 4.28 Внешний вид и схема сборки Е-7 — цилиндрического ударно-волнового излучателя (ЦУВИ). Цилиндр из монокристалла иодида цезия 1 помещен в кольцевой заряд 2,(и тот, и другой размещены в футляре из плексигласа), а детонация на внешней поверхности заряда инициируется стаканом 3 из эластичного ВВ, через который проходит пара окружающих монокристалл параллельно включенных витков медного провода 4, соединенных с высоковольтным конденсатором 5. Секторный вырез в стакане из эластичного ВВ сделан только на макете — для наглядности…02 марта 1983 года атмосфера на испытательной площадке была благодушная: два совместных подрыва — ВМГ и облака горючего — продемонстрировали ожидавшийся результат прибывшим на показ начальникам. Приступили к «факультативу» — испытаниям ЦУВИ. Первая сборка по каким-то причинам сработала неважно, но готовить взрывной опыт и не предусмотреть необходимость его повторения — непростительная глупость! При взрыве второй сборки лучи осциллографов рванулись вверх, «выскочив» за пределы экранов. Офицеры сообщили, что вышли из строя смесительные диоды в антеннах, стоявших в пяти метрах от взрыва. Мощность излучения по крайней мере в сто раз превысила ту, которую зарегистрировали в опытах с объемной детонацией! Этот опыт поставил некоторых участников испытаний в затруднительное положение: их начальники увидели устройство размерами в десятки раз меньшее, чем объемно-детонирующие макеты, но излучавшее РЧЭМИ на два порядка большей мощности. Когда шок миновал, начались «маневры»: стали требовать описания ЦУВИ — «для отчета». Уступить «коллективу» такую находку, как ЦУВИ — неразумно: не так уж часто они выпадают в жизни исследователя. Уклончивость попытались преодолеть шантажом: заявили, что диоды из строя не выходили, сигналы на осциллографах были наводками от токов запитки, РЧЭМИ вообще не было, потому как «электрончиков, электрончиков в твоем устройстве не видать», а, если не будет отчета, то и в дальнейших испытаниях офицеры участвовать не намерены. Саркастически «согласившись» с противоречивыми доводами, пришлось заметить, что, раз все это было наводками, то, действительно, нет смысла тратить время на опыты, а тем более — на написание отчета.
… Разговоры о наводках продолжались много лет и «достали» настолько, что позже пришлось изготовить демонстрационную сборку (рис. 4.29): начальное поле в ней создавалось системой постоянных магнитов, а не большими токами. Понятно, что генерируемое такой сборкой РЧЭМИ не было рекордным по мощности, но — достаточно мощным, чтобы его можно было зарегистрировать. Сладкоголосые певцы «наводок» чуть приутихли, но не заткнулись, как им настоятельно советовали, а стали списывать регистрируемые сигналы на счет электромагнитного излучения, возникающего при взрыве ВВ (хотя мощность такого излучения, по свидетельству первооткрывателей этого явления, на много порядков ниже).
Рис. 4.29 Слева — сборка ЕХ-10. Начальное поле в рабочем теле создается системой постоянных магнитов. 1 — детонатор; 2 — детонационная разводка из эластичной взрывчатки; 3 — постоянные магниты; 4 — рабочее тело; 5 — кольцо из взрывчатки. Справа — «чистая», без каких-либо наводок от срабатывания высоковольтных цепей, осциллограмма производной магнитной индукции при сжатии ударной волной созданного постоянными магнитами поля (полученная с пробной катушки, размещенной в отверстии, просверленном в рабочем теле). Сигнал вышел за поле экрана осциллографа, но так и было задумано, потому что за слишком быстрым изменением поля в конце сжатия луч осциллографа «проследить» все равно не в состоянии, а ценную информацию о сохранении потока на начальной стадии, когда поле меняется сравнительно медленно, получить можноПопытки шантажа были, понятно, основной движущей силой такого рода маневров, но встречались и проблемы, с которыми ранее сталкиваться не приходилось…
… 17 июня 1986 года, с аппарели [87] десантного корабля, группа испытателей сошла на остров Коневец в Ладожском озере: там готовили к испытаниям крылатую противокорабельную ракету П-15 [88] (рис. 4.30).
П-15 разрабатывалась в конце 50-х, и в системе ее наведения преобладали схемы на лампах. Имелись только четыре полупроводниковых диода: два — в смесителе и два — в канале автоподстройки частоты. Будучи мишенью для излучателей РЧЭМИ, П-15 и сама нуждалась в цели, которую соорудили, подняв над шлюпкой «железный парус». Шлюпку поставили на якорь в 120 метрах от ракеты, и отраженный сигнал был очень мощным («больше, чем от крейсера при стрельбе в упор» — говорил офицер, обслуживавший ракету).
…Радиолокационная головка самонаведения жадно захватывала «железный парус». После подрыва сборки в полусотне метрах от ракеты стрелка прибора «ток смесителя» заметно дернулась, но на осциллографе контрольного стенда осталась «картинка», соответствующая удержанию цели головкой самонаведения. Это было невероятно: надо только представить, насколько мощным должно быть ударное возбуждение от наносекундного импульса РЧЭМИ, чтобы стрелочный прибор среагировал на него двукратным отклонением от номинального уровня! И тем не менее — ракета цель не потеряла! Пара следующих дней принесла аналогичные результаты: хотя сборки подрывали все ближе к ракете, потери цели головкой ее самонаведения не фиксировались.
Рис. 4.30 Слева — противокорабельная ракета П-15. Целью для нее служил «железный парус» — уголковый отражатель из листов жести (справа)
Пошли дожди, опыты прервали и стали обследовать «пятнадцатую». Выяснилось, что все ее диоды имеют одинаковые сопротивления как для «прямого», так и для «обратного» тока. После долгих препирательств их стали поочередно заменять резисторами с сопротивлениями в сотни Ом. Можно было заменить на резисторы все диоды в канале автоподстройки частоты и один в смесителе (три из четырех имевшихся во всей схеме), и все равно захват «железного паруса» не срывался: на дистанции в сотню метров мощность отраженного от него сигнала превышала все разумные пределы!
Следующий солнечный день был ветреным, Ладога покрылась пенными «барашками». В ракете заменили все диоды на новые, сборку расположили в 20 метрах под углом примерно 30 градусов к оси головки самонаведения и стали ждать. Наконец, кто-то заорал: «Баржа!» Начали лихорадочно заряжать батарею, приводить в рабочее состояние ракету. Ракета «увидела» шедшую на дистанции около трех морских миль баржу, и сборку подорвали. Захват был немедленно потерян. Тот же результат получили, и когда ракета «смотрела вслед» уже уходящей барже, а сборку (последнюю из имевшихся) подорвали в 30 метрах под углом в 45 градусов к линии визирования головки. Два фактора: отраженный от цели сигнал реальной, а не аномальной амплитуды и наличие помех от «барашков» на водной поверхности (весьма незначительных по морским меркам) привели к тому, что и должно было произойти. Эта серия показала, как сложны процессы, вызываемые РЧЭМИ в электронике и как противоречивы могут быть оценки эффектов. Впоследствии не раз приходилось отклонять предложения дилетантов провести «оценочные» испытания с использованием в качестве мишеней электронных часов или туристических приемников, потому что это было бесполезной тратой сил и средств: боеприпасы не предназначены для выведения из строя часов. Если часы все же вышли из строя, то это не значит, что выйдет из строя военная электроника; если же часы продолжают после опыта идти, то военная электроника как раз может и «сгореть».