Лидия Александровская - Сертификация сложных технических систем
Системы или подсистемы обеспечения надежности разрабатываются предприятиями в соответствии с требованиями стандарта МЭК 300-1, при этом должны быть реализованы следующие принципы:
• приоритетность требований потребителя (заказчика);
• предупреждение проблем надежности;
• комплексное решение задач обеспечения надежности на всех стадиях жизненного цикла;
• личная ответственность высшего руководства за разработку, внедрение и эффективное функционирование системы;
• обеспеченность проводимых работ необходимыми ресурсами;
• ответственность, самоконтроль и стимулирование персонала за надежность продукции;
• использование экономических методов обеспечения надежности с целью реализации оптимального соотношения между затратами на обеспечение надежности, стоимостью продукции и получаемым эффектом.
Основными целями сертификации систем обеспечения надежности являются:
• объективное подтверждение заявленных предприятием возможностей стабильно обеспечивать разработку и/или производство надежной СНП в полном соответствии с требованиями заказчика (потребителя);
• содействие заказчику (потребителю) в компетентном выборе предприятий для размещения заказа на продукцию для государственных нужд и государственного оборонного заказа.
Эти цели достигаются:
• установлением статуса сертификата как государственного гаранта надежности продукции (в том числе поставляемой из стран ближнего и дальнего зарубежья);
• соответствием норм, правил и процедур сертификации международным требованиям;
• государственной поддержкой в обеспечении международного признания сертификата, в том числе на основе двусторонних и многосторонних межправительственных соглашений;
• ориентацией на максимальное использование имеющегося научно-технического и интеллектуального потенциала предприятий оборонного комплекса, что обеспечивает оптимизацию затрат на сертификацию;
• предоставлением органам государственного управления и заинтересованным организациям, предприятиям и частным лицам объективной информации о надежности продукции, стабильности и возможностях производства, необходимой для принятия решений о размещении государственных заказов, кредитования развития приоритетных направлений оборонного комплекса, инвестиционной поддержки конкурентоспособных предприятий и др.
Основу организационной структуры подсистемы надежности может составлять действующая организационная структура системы «Оборонсертифика» (см. п. 4.4).
6.5. Сертификация программно-математического обеспечения
6.5.1. Зарубежный опыт сертификации программно-математического обеспечения
В авиационной промышленности накоплен многолетний опыт конструирования, производства, монтажа и применения аналогового оборудования и систем, в том числе выполняющих в полете критические функции. Разработаны и успешно применяются методы и процедуры, позволяющие демонстрировать соответствие требованиям, предъявляемым полномочными государственными органами, регулирующими деятельность в области авиации. Согласно этим требованиям отказы в оборудовании и системах, выполняющих критические функции, не должны оказывать влияния на безопасность летательного аппарата.
В перспективе все большую долю будут составлять оборудование и системы, использующие цифровые вычислители. При этом качество программно-математического обеспечения (ПМО) будет непосредственно влиять на безопасность полетов. Таким образом, необходима разработка руководств по сертификации программно-математического обеспечения. За рубежом, и в первую очередь в США, накоплен значительный опыт сертификации цифрового бортового оборудования самолетов, представляющий значительный интерес для отечественных специалистов. Наиболее полно принципы сертификации авиационного бортового оборудования изложены в документах Радиотехнической комиссии США по аэронавтике (РТКА). Временный специализированный комитет, учрежденный исполкомом РТКА, пришел к заключению, что хотя стандарты РТКА и стандартизированные технические требования федерального авиационного управления (FAA) и охватывают в достаточной степени сертификационные требования и характеристики выполняемых функций, однако необходимо дополнительное руководство относительно требований к программно-математическому обеспечению. Временный специализированный комитет рекомендовал исполкому РТКА образовать специальный комитет, целью которого явилась бы разработка и оформление в виде документа практических методов, помогающих сертифицировать оборудование и системы, основанные на использовании программно-математического обеспечения. В 1980 г. был учрежден Специальный комитет «Математическое обеспечение цифрового радиоэлектронного авиационного оборудования».
Круг полномочий комитета включал в себя следующие вопросы:
• разработку плана проверки и демонстрации качества программно-математического обеспечения;
• разработку классификации требований при демонстрации качества программно-математического обеспечения по категориям, определяемым критичностью систем при выполнении полета;
• разработку информационного и конструктивного материала по программно-математическому обеспечению авиационного оборудования;
• выдачу рекомендаций относительно изменений существующих стандартов, необходимых для учета особенности применения цифровой техники;
• координацию деятельности с другими организациями.
6.5.2. План сертификации
Предполагается, что любая программа сертификации цифрового бортового оборудования или системы будет выполняться в соответствии с планом, подготовленным соискателем свидетельства о летной годности летательного аппарата и утвержденным полномочным государственным органом, регулирующим авиационную деятельность.
План должен охватывать:
• категорию критичности, применительно к которой должны быть сертифицированы оборудование или система;
• существо сертификации (сертификация типа, соответствие стандартизированным техническим требованиям и пр.);
• программы разработки, испытаний, сопровождения и гарантии качества программно-математического обеспечения;
• разделы нормативных документов, на соответствие которым будет проводиться сертификация;
• специальные условия;
• документацию, необходимую для сертификации.
6.5.3. Классификация функций по категориям критичности
Критерии, используемые при сертификации цифрового оборудования и систем, основаны на значимости функций, выполняемых этим оборудованием или системами для безопасности полета. Ключевое значение при этом имеет влияние, оказываемое неисправностью или утратой функции, на безопасность. Описанные ниже категории критичности приняты авиационными специалистами и полномочными государственными органами, регулирующими авиационную деятельность. Существуют следующие категории критичности функций:
׳ критическая – к ней относятся функции, для которых возникновение любой опасной ситуации или проявление ошибки исключает безопасное продолжение полета и выполнение посадки;
• важная – к ней относятся функции, для которых возникновение любой отказной ситуации или ошибки снижает возможности летательного аппарата и уменьшает способность экипажа справиться с неблагоприятными условиями полета;
• не важная – к ней относятся функции, для которых отказы или ошибки не приводят к значительному ухудшению возможностей летательного аппарата или экипажа.
Классификация каждой функции осуществляется с использованием описания проекта, анализа, моделирования, метода аналогий, наземных и летных испытаний и пр.
Правильность выбора категории критичности подтверждается полномочным органом при разработке плана сертификации.
6.5.4. Требования и процедуры разработки программно-математического обеспечения
Общий подход учитывает три разновидности сертификации: сертификация типа, дополнительная сертификация типа, сертификация на соответствие стандартизированным требованиям FАА (рис. 6.7).
Процесс сертификации начинается с документа «Требования к системе». Затем разработчик определяет перечень работ, необходимых для проверки соответствия программно-математического обеспечения предъявляемым требованиям и для санкционирования его эксплуатационной пригодности (табл. 6.1). Рисунок 6.8 показывает, что разработка является итерационным процессом. Рисунок 6.9 иллюстрирует процесс разработки программно-математического обеспечения. На каждой стадии
разработки (для гарантии качества программно-математического обеспечения) выполняются проверки.
Таблица 6.1
Примечание: