KnigaRead.com/

Эдмунд Цихош - Сверхзвуковые самолеты

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Эдмунд Цихош, "Сверхзвуковые самолеты" бесплатно, без регистрации.
Перейти на страницу:

– выдвигаемый щиток, выполняющий роль генератора косых скачков уплотнения, образующих конус Маха, внутри которого скорость потока и динамическое давление на 30% меньше, чем снаружи;

– быстрый поворот кресла после катапультирования в горизонтальное положение, с тем чтобы сиденье кресла воспринимало действие динамического давления;

– конструктивно связанную с креслом отъемную часть фонаря кабины, которая во время катапультирования поворачивается таким образом, чтобы закрыть от набегающего потока все кресло вместе с пилотом.

Эти способы могут оказаться эффективными в частных случаях, например при автоматическом катапультировании летчика, находящегося без сознания, из самолета, погружающегося в воду.

Спасательная капсула

Частые аварии и катастрофы первых сверхзвуковых самолетов, невысокая эффективность открытых катапультируемых кресел в экстремальных условиях полета, а также сложность отделения и безопасного возвращения на землю передней части самолета с экипажем привели к появлению в 50-х годах более рациональных закрытых катапультируемых устройств, называемых спасательными капсулами. Во время аварии это устройство по сигналу катапультирования автоматически закрывает человека вместе с креслом специальными щитками и, кроме того, позволяет применять более разнообразное оборудование, повышающее безопасность с момента катапультирования до приземления.

Изучалась возможность использования негерметичных и герметичных капсул. В первом случае капсула защищает человека от воздействия динамического давления, аэродинамического нагрева и частично от перегрузок при торможении (благодаря увеличению массы и уменьшению сопротивления). В свою очередь герметичная капсула позволяет, кроме того, совершать полет без сложного скафандра, затрудняющего движения, и парашюта, а также прочих индивидуальных средств членов экипажа. С учетом этих достоинств практическое применение получили герметические капсулы, обладающие непотопляемостью, что обеспечивает безопасное приводнение.

Первую из известных капсул разработала фирма «Гудьир» для военно-морской авиации США в начале 50-х годов. Однако эта капсула не нашла применения. Затем были созданы капсулы для самолетов В-58 и ХВ-70А. Конструкция этих капсул и приспособлений, служащих для катапультирования, определялась требованием безопасного покидания неисправного самолета в широком диапазоне высот и скоростей полета. Для самолета ХВ-70А такой диапазон скоростей начинается со 150 км/ч (при нулевой высоте) и охватывает скорости вплоть до М = 3 (при этом покинуть самолет, летящий с максимальной скоростью, можно только на высоте, превышающей 2100 м). Подробных данных о самолете В-58 не опубликовано, однако известно, что во время наземных испытаний капсула поднималась на высоту 75 м, что при использовании быстро раскрывающегося парашюта обеспечивает высокий уровень безопасности приземления.

Автоматическое оборудование, примененное, например, в капсуле самолета В-58, осуществляет подготовку к катапультированию, само катапультирование и приземление. Подготовка к катапультированию в этой капсуле включает придание телу человека определенного положения, закрытие капсулы и ее герметизацию. Механизм катапультирования приводится в движение с помощью одного из двух рычагов, расположенных на подлокотниках кресла. После этого зажигается пороховой заряд, газы которого попадают в два привода; один из них подтягивает и фиксирует ноги, другой отодвигает туловище назад и стабилизирует положение головы. После этих операций пороховые газы проникают в механизм герметичного закрывания капсулы. Длительность этих операций составляет около одной секунды, после чего осуществляется герметизация кабины и создается давление, соответствующее высоте 5000 м, что занимает еще 2-3 с. Закрытие капсулы вызывает срабатывание нескольких концевых выключателей электрических цепей. Цепь аварийной сигнализации закрытия капсулы передает сигнал остальным членам экипажа о принятии решения на катапультирование. Другая цепь включает средства связи, передающие сигналы об аварии. После закрытия капсулы пилот сохраняет возможность управления самолетом, так как штурвал остается в своем нормальном положении внутри капсулы, а ее обтекатель имеет иллюминатор, через который можно наблюдать за показаниями приборов и частью оборудования кабины. Такая конструкция позволяет осуществить (если авария не имеет катастрофического характера) снижение, изменение направления полета и даже открытие капсулы с сохранением возможности ее повторной герметизации. Система катапультирования не зависит от подготовительных операций, поэтому сам процесс катапультирования капсулы может быть произведен и в случае их невыполнения, например при поломке или отказе устройств, обеспечивающих выполнение подготовительных операций.


Рис. 1.67. Спасательная капсула самолета В-58.


Процесс катапультирования основан на принципе, использованном в катапультируемых сиденьях, оборудованных ракетными двигателями, запускаемыми с помощью вспомогательной системы. Нажатие рычага катапультирования приводит к воспламенению порохового заряда. Выделяющиеся при этом газы сбрасывают обтекатель кабины, и по истечении 0,3 с происходит запуск ракетного двигателя. Во время движения капсулы вверх происходит воспламенение другого порохового заряда, выбрасывающего наружу стабилизирующий парашют, который после отделения капсулы от самолета инициирует раскрытие на ее поверхности щитков-стабилизаторов. Движение капсулы по направляющим катапульты сопровождается отделением от нее элементов управления и систем, связанных с самолетом, а также включением внутренней аппаратуры жизнеобеспечения.

Кроме того, происходит включение внутри капсулы таймерно-анероидных автоматов, которые после уменьшения высоты и скорости полета капсулы до безопасных значений вызывают открытие спасательного парашюта и выполнение всех надлежащих операций, в том числе наполнение амортизирующих резиновых подушек, смягчающих удар при приземлении или приводнении капсулы. В случае приводнения осуществляется наполнение дополнительных поплавковых камер, увеличивающих плавучесть и устойчивость капсулы на неспокойной поверхности воды. Во время плавания капсула может находиться как в открытом, так и закрытом состоянии. Если в случае волнения водной поверхности капсула должна быть закрыта, то осуществляется подключение шланга кислородной маски к клапану системы дыхания атмосферным воздухом. Несколько иную конструкцию имела капсула, примененная на самолете ХВ-70А. Она была оборудована обтекателем, состоящим из двух частей, а угол наклона кресла мог изменяться (рис. 1.68). Стабилизацию положения капсулы в полете обеспечивали два цилиндрических кронштейна телескопического типа, выдвигаемые через 0,1 с после катапультирования. Длина кронштейнов в расправленном положении составляла 3 м. Концы кронштейнов были снабжены стабилизирующими парашютами, которые раскрывались через 1,5 с после катапультирования. Силовая установка капсулы позволяла осуществить ее выброс на высоту до 85 м. Во время наземных испытаний собственная масса капсулы составляла 220 кг, а место испытателя было заполнено 90-килограммовым балластом. Безопасное снижение происходило с помощью спасательного парашюта, имеющего диаметр купола 11 м, а приземление или приводнение осуществлялось с помощью амортизатора в виде резиновой подушки, наполняющегося газом во время снижения.


Рис. 1.68. Спасательная капсула самолета ХВ-70А.


Применение капсул такого типа обеспечивает возможность работы экипажа из двух человек в общей кабине вентиляционного типа, такой же, какая обычно используется на транспортных самолетах. Внутри капсулы, под сиденьем, размещается набор предметов первой необходимости, в состав которого, кроме всего прочего, входят: передающая радиостанция, высылающая сигналы для определения местоположения капсулы, и оборудование, необходимое для обеспечения жизнедеятельности в тропических и арктических условиях (в том числе удочка, ружье, вода, продовольствие и т.п.).

Отделяемая кабина

Основной предпосылкой разработки отделяемой кабины являлось стремление к повышению степени безопасности полетов, поскольку считалось, что отделение кабины от самолета при любых условиях и режимах полета будет для экипажа более легким и удобным процессом, осуществляемым, возможно, быстрее, чем при использовании катапультируемых сидений или капсул. Такая кабина должна быть устойчивой в полете и обеспечивать меньшие перегрузки.

В зависимости от принятой конструктивной идеи кабины уменьшение перегрузки может быть достигнуто либо посредством увеличения отношения массы кабины к ее аэродинамическому сопротивлению, либо путем использования ракетных двигателей, противодействующих резкой потере скорости при отделении кабины.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*