Александр Прищепенко - Шипение снарядов
Понимаю, как возмущает многих нигилизм, все эти неприличные намеки насчет руководящих товарищей, пекущихся о народном благе. Создается ложное впечатление, что суетятся в науке одни фрондеры, высмеивающие идеи, ниспосланные сверху. Так нет же, подобно «свинье под дубом вековым» из басни Крылова, пробавляются насмешники теми идеями!
…Вспомним, как доходчиво и красочно представляют на графиках наше с вами благосостояние. По оси абсцисс — годы, годы… Но взметнулась вверх красная кривая и сучит по экрану указочка, или — пляшет лазерный зайчик: сейчас вот — да, не очень, но посмотрите: через пару-тройку годков скакнет в разы, а через десять-то — ой, «запируем на просторе!»
… Опыт готовят долго, но вот датчики и кабели подсоединены, и всех загнали в бункер. Кнопка нажата; на взрыв не смотрят, это опасно. Видна отраженная от стен вспышка. Через доли секунды воздух на мгновение становится тугим и бьет по ушам. Близкая детонация разгоняет соломинку так, что она втыкается в сталь. На дистанции около метра от взрыва поток газов до песчинки счищает почву с корня дерева (иногда этим пользуются, оставляя вблизи заряда «сувениры»; при инструктаже невредно напомнить, что так же чисто могут быть «обдуты» и мышцы с кисти руки). Наконец, гром взрыва умирает, сделав слышным тихий шелест летящих осколков — остатков того, что еще несколькими мгновениями ранее было генератором, собранным вашими руками. Первый взгляд — на осциллографы: есть ли сигналы от датчиков тока.
Осциллограф — главнейший в экспериментальной физике прибор. Тонкий луч непрерывно эмитируемых в его трубке электронов вызывает свечение в той точке экрана, на которую он падает. По горизонтали отклоняет этот луч одна пара пластин, на которую подается возрастающее во времени напряжение, и пробегает он равномерно сантиметры экрана, только не за годы, а за микросекунды. А на вертикальную пару пластин подается напряжение исследуемого сигнала. Нет сигнала — и ровную линию прочертит осциллограф. Есть сигнал — и получи́те осциллограмму — объективное свидетельство развития во времени процесса, который вы исследуете. И если все подключено правильно, не сомневайтесь: осциллограмма — не партийная программа (хорошо сформулировал, в рифму!).
Вот и подал автор на вход осциллографа сигнал с пробной катушки, размещенной на оси устройства. В опыте, при сжатии лайнера в полтора раза (от 45 мм до 30 мм) магнитный поток уменьшился всего на 9 % от того, который был создан разрядом конденсатора.
От этого ИВМГ требовалась высокая скорость схождения лайнера, а потому катушка, из которой он образовался, была намотана алюминиевыми, а не медными проводками: ради скорости метания проводимость была принесена в жертву. Сохранение потока и так было достаточным, поскольку представляла интерес ранняя стадия сжатия, на которой еще не слишком развиты нестабильности на внутренней поверхности лайнера.
Каждый видел, по крайней мере — по телевидению, «кусты» разрывов — это и есть нестабильности. Весьма наглядна и фотографии 2.6, 2.9: слой песка, метаемый взрывом бомбы, вырождается в струи, летящие в воздухе.
Нестабильности развиваются при большой разнице в плотности движущегося вещества и среды, где происходит его движение. Именно такое соотношение и имеет место в ИВМГ: лайнер из металла движется в воздухе. На кадрах высокоскоростной съемки (рис. 4.11) видно, как на внутренней поверхности лайнера начинают расти «пальцы», а потом образуется «звезда», разрезающая объем сжатия, на чем процесс усиления поля и заканчивается. В опытах автора (о них речь впереди) лайнер выполнял две функции, причем главной являлось формирование ударной волны при ударе лайнера о цилиндрическое тело. Ударной волне тоже следовало быть цилиндрической, а, значит, в лайнере — недопустимы значительных размеров нестабильности. «Поджатие» же поля было приятным, но не решающим обстоятельством.
Рис. 4.11 Процесс развития нестабильностей в лайнере ИВМГ. Со временем (интервал между снимками 1,6 мкс) внутренняя поверхность лайнера из цилиндрической становится звездообразной
Привыкшие достигать совершенства, специалисты ВНИИЭФ добились того, что в кинетическую энергию лайнера передавалось до 30 % химической энергии ВВ (теоретически возможный уровень — 32 %). Но химическая энергия распределена по большому объему заряда ВВ, а кинетическая энергия лайнера в конце процесса кумулируется в полости небольших размеров, что и позволило достигнуть рекордного значения плотности энергии магнитного поля (4·107 Дж/см3), на несколько порядков превышающего плотность химической энергии в бризантных ВВ.
Но даже если подавить нестабильности, лайнер все равно будет остановлен магнитным давлением: оно возрастает быстрее, чем гидродинамическое давление в его веществе. Площадь области, охватываемой лайнером, убывает обратно пропорционально квадрату радиуса, а значит, в той же пропорции возрастает индукция поля; для магнитного же давления эта зависимость еще сильнее — оно пропорционально квадрату индукции, то есть — обратно четвертой степени радиуса! Закон возрастания давления гидродинамических сил куда слабее — оно всего лишь обратно пропорционально логарифму радиуса. Из этого следует, что магнитное поле, пусть даже очень слабое вначале, неизбежно станет «сильнее» взрыва и остановит движение лайнера к оси. Между прочим, чем слабее начальное поле, тем выше может быть магнитная энергия в точке остановки: ведь слабое поле дольше усиливается, а значит, будет остановлено ближе к оси, где гидродинамическое давление выше. В проведенных во ВНИИЭФ опытах давление магнитного поля индукцией в 1000 Тл достигало четырех миллионов атмосфер, что превышало прочностные пределы любых материалов.
Рекордные значения магнитной энергии в лайнерном ИВМГ получают только при очень большом токе запитки, потому что усиление, определяемое отношением начального и конечного радиусов сжатия, в генераторе этого типа невелико.
Взрывомагнитные генераторы всех типов создавались для применения в ядерном оружии, в частности — для энергообеспечения систем нейтронного инициирования, но предпринимались и попытки расширения области их использования.
…В то, что импульсное магнитное поле способно хорошо «нажать» на металлическое тело, читателю до сих пор приходилось «только верить», но желающие могут убедиться в этом. Установка, которую им предстоит собрать, проста (рис. 4.12).
Рис. 4.12 Схема домашней пушки Гаусса и ее элементы: 1– диод; 2 — резистор; 3 — конденсатор; 4 — катушка с расположенным на ее оси стволом из диэлектрика; 5 — центратор с насаженным кольцом и стальные кольца-снаряды на постоянном магните (см. также врезку слева); 6 — штанга для закорачивания контура.Выдающийся германский физик и математик К. Гаусс (1777–1885) теоретически обосновал возможность достижения неограниченных скоростей метания проводящих тел магнитным полем (именно — теоретически, потому что на практике эти скорости всегда чем-нибудь да ограничиваются). Он показал, что в энергию метаемого тела может быть преобразовано около 7 % энергии тока, протекающего в катушке (что примерно впятеро ниже КПД выстрела заряженного порохом орудия крупного калибра). Но заставить вырвавшиеся из ствола пороховые газы дополнительно ускорить снаряд нельзя, а вот запитать «отработанным» токовым импульсом другую катушку — можно, поэтому идея Гаусса заключалась в разгоне тела при прохождении им последовательности катушек. Максимальная энергия передается метаемому телу, если ток заканчивается в момент достижения телом середины обмотки, но обеспечить синхронную запитку нескольких катушек в домашних условиях сложно: потребуется много конденсаторов, тиристоров для коммутации, линий задержки, а главное — осциллограф, без которого экспериментатор слеп. Так что воспроизведена всего лишь секция пушки Гаусса, как и в «Хохдрукспумпе» — одна из многих.
Главный элемент — катушка. Ее наматывают эмалированным проводом (ПЭВ, ПЭВТЛ) диаметром 0,5–0,8 мм. Каркасом служит обрезок трубки из диэлектрика (подойдет та, что прилагается к пакету с соком или корпус шариковой ручки, главное — чтобы стенки были потоньше) и два диска-ограничителя из любого диэлектрика. Всего надо намотать примерно 500 витков, стараясь, чтобы обмотка была плотной (ее можно уместить в 12–15 слоев).
Другой важный элемент — конденсатор. Как и при намотке катушки, здесь возможна импровизация, но ориентир указать стоит: у автора под рукой оказался японский, полярный, емкостью 4700 мкФ. Допустимое напряжение зарядки должно быть не менее 400В.