Сергей Семиков - Баллистическая теория Ритца и картина мироздания
Стоит отметить, что, порой, сдвиг частоты от ускорения может восприниматься и как проявление гравитационного сдвига частоты. Так, в известном опыте Паунда и Ребке, выполненном в 1960 г. с помощью того же эффекта Мёссбауэра, было обнаружено, что частоты ядерных процессов f' и f в радиоактивных изотопах, один из которых располагался на высоте H=20 м над другим, относились как f'/f=1-gH/c2, в полном согласии с предсказанием ОТО. С другой стороны, очевидно полное совпадение полученной величины частотного сдвига с изменением частоты по эффекту Ритца. Ведь в опыте частоты сравнивались в процессе испускания нижним источником гамма-излучения к верхнему. При этом, поскольку на нижний источник действует сила тяжести, то, даже от малейших колебаний, он будет двигаться с ускорением a=g, направленным вниз. Поэтому, даже если скорость источника в этих колебаниях ничтожна (за краткий период механических вибраций источник просто не успеет набрать заметной скорости), это ускорение повлияет на частоту f' излучения, приходящего от источника к поглотителю на высоту H, по эффекту Ритца f'/f=1-gH/c2. Впрочем, не исключено, что на скорость хода ядерных процессов тяготение влияет так же, как на ход атомных, и тогда добавка вызвана исключительно гравитацией (§ 1.18), тогда как ускорение — совершенно отсутствует, за счёт надёжной фиксации источника. Но вполне возможно, что причина состоит исключительно в ускорении свободного падения g и в эффекте Ритца, особенно если учесть переизлучение атмосферой — атомами и ядрами, расположенными на пути луча, летящими с ускорением g и, за счёт сообщения своей скорости свету, ведущими к сдвигу частоты даже при жёстком креплении источника.
Другой известный эффект — изменение частоты света в гравитационном поле Солнца и звёзд, который Эйнштейн в 1911 г. объяснил абсурдным замедлением времени возле тяготеющих тел, наращивающим период световых колебаний. Эффект снижения частоты света у Солнца (по сдвигу его спектральных линий в красную область) был открыт ещё в 1897 г. и широко обсуждался в печати с 1909 г. [30, с. 98]. Однако это явление можно легко объяснить без теории относительности и мнимого изменения масштаба времени, если применить классическую физику и открытый в 1908 г. эффект Ритца: изменение периода и частоты света от ускоренно летящего источника. Ведь в мощном гравитационном поле Солнца ускорение a свободного падения превосходит земное (g=10 м/с2) в 30 раз: a=GMS/R2S=272 м/с2, где G=6,67·10–11 Н·м2/кг2 — гравитационная постоянная, MS=2·1030 кг — масса Солнца, RS=7·108 м — его радиус. Атомы, излучая характерные спектральные линии, падают в атмосфере Солнца с ускорением a. От эффекта Ритца их свет частоты f и длины волны λ воспринимается на Земле как свет частоты f'=f(1–aL/c2) и длины λ'=λ(1+aL/c2), где L — путь, на котором преобразуется свет. То есть, классический эффект Ритца тоже ведёт к росту длины волны, покраснению света Солнца и других звёзд под действием их тяготения. Он же, как увидим, ведёт и к покраснению далёких галактик, — пропорционально расстоянию L до них (закон Хаббла, § 2.4).
Но, в случае покраснения света Солнца, путь L, на котором набирается красный сдвиг Δλ=λ'—λ=λaL/c2, уже не равен расстоянию до Земли, как было бы в чистом вакууме. Ведь Солнце окружено атмосферой, и эффективный путь L много меньше. В самом деле, рост длины волны, по эффекту Ритца, связан с тем, что световые лучи наследуют скорости излучающих атомов, отчего гребни световых волн, испущенные позднее, имеют меньшие скорости (атомы замедляются тяготением Солнца) и всё больше отстают от испущенных ранее. В итоге, длины световых волн (расстояния меж гребнями) постепенно растут за счёт разницы скоростей. Но свет, следуя через атмосферу Солнца и взаимодействуя с её атомами, переизлучается ими и, по теории Ритца, приобретает скорость c уже относительно этих атомов: именно их ускорение a(R) задаёт дальнейшее растяжение световых волн. Атмосфера и корона Солнца простирается на десятки радиусов RS за видимые границы светила, как видно при затмениях. На таких расстояниях R ускорение a(R)=GMS/R2 спадает почти до нуля.
То есть, в расчёте сдвига Δλ надо учесть переменность a(R) и суммировать приросты dλ=λadL/c2 на каждом элементарном участке пути dL=dR, интегрируя dλ=λGMSdR/R2c2 в пределах изменения R от RS до RF, равного крайнему радиусу короны Солнца, где a=0. В итоге общий сдвиг длины волны
Δλ=[1/RS-1/RF]λGMS/c2,
или с учётом RF>>RS,
Δλ/λ= GMS/RSc2= 2,12·10-6.
Это, найденное по теории Ритца, красное смещение для Солнца совпадает с формулой, данной Эйнштейном в 1911 г., спустя три года после открытия Ритцем эффекта сдвига спектра при ускорении [30]. Именно такое смещение линий в спектре Солнца было зафиксировано при точных измерениях [107]. Аналогичный эффект изменения по Ритцу длины волны и частоты света был обнаружен и в поле тяготения Земли, причём, — не только по эффекту Мёссбауэра (при разнице высот в 20 м), но и с помощью ракеты, поднявшей стандарт частоты на высоту 10000 км и посылавшей его сигналы на Землю [26, с. 67]. Таким образом, изменение частоты и длины волны света в поле тяготения Земли, Солнца и других звёзд, вероятней всего, вызвано не самой гравитацией, а — ускоренным движением излучающих и переизлучающих атомов в поле тяготения. Именно из-за эффекта Ритца, а не от пресловутого принципа эквивалентности, ускорение и тяготение одинаково приводят к сдвигу частоты.
Чтобы убедиться в этом ещё раз, рассмотрим опыты, выявляющие, по эффекту Мёссбауэра, ничтожные сдвиги спектра, когда источник и приёмник находятся уже не на разных высотах, а на разных дистанциях R1 и R2 от оси крутимого с угловой скоростью ω диска, создающего сдвиг частоты за счёт центростремительного ускорения a=ω2R. Сдвиг длины волны Δλ=λ'—λ, по эффекту Ритца, снова найдём интегрированием dλ=λadR/c2=λω2RdR/c2, в пределах изменения R от R1 до R2. Отсюда Δλ/λ=[R22-R12]λω2/2c2. Тот же результат, подтверждённый опытом, даёт и ОТО, но — сложней и с мнимым замедлением времени от ускорения [153]. А в теории Ритца сдвиг спектра — это естественное следствие баллистического принципа и переизлучения света атомами промежуточной среды, диска и воздуха, увлечённого его вращением. Когда же среды нет (или её влияние мало), сдвиг спектра задаётся лишь ускорением источника и расстоянием до него, как для красного смещения по закону Хаббла (§ 2.4).
Итак, нет релятивистских эффектов, которые нельзя объяснить по классической теории Ритца! Одна эта теория даёт всё, что объясняла электродинамика Максвелла, СТО и ОТО, а, сверх того, предсказывает закон Хаббла и прочие эффекты космоса, непонятные в рамках этих теорий (Часть 2).
Эффект Ритца объясняет и то, почему ряд верных выводов Эйнштейн получил из ошибочного постулата ОТО об эквивалентности гравитационной и инертной массы. По этому постулату, находясь в лифте, нельзя определить, покоится ли он на земле или движется вдали от неё с ускорением g, отчего длину волны света одинаково меняет гравитация и ускорение, как подтвердили опыты по анализу сдвига спектра в ускоренно движущихся системах. На деле же, как видели, принцип эквивалентности — неверен, ибо гравитационная и инертная масса имеют разную природу, и можно говорить лишь об их равенстве, пропорциональности (§ 1.17). А что касается равенства сдвигов спектра при ускорении и в поле тяготения, то его и следовало ожидать из эффекта Ритца. Именно ускорение источника света (а не сама гравитация) преобразует спектр. И не важно, чем вызвано данное ускорение a: вращением, тяготением или иной силой, — сдвиг спектра будет одинаков в согласии с опытами. При этом, разумеется, не происходит никакого реального изменения масштаба времени при ускорении и в поле тяготения: идёт лишь сдвиг принимаемой частоты колебаний приёмника, словно в эффекте Доплера.