KnigaRead.com/

Карл Гильзин - Ракетные двигатели

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Карл Гильзин, "Ракетные двигатели" бесплатно, без регистрации.
Перейти на страницу:

Так как масса равна весу, деленному на ускорение земного притяжения (g=9,81 м/сек2), то для определения силы тяги служит следующая простая формула:

Каждый килограмм вытекающих в секунду газов создает тягу, численно равную, очевидно, 1/10 от скорости истечения. Эта тяга, носящая название удельной тяги или удельного импульса (размерность удельной тяги кг сек/кг), является основной характеристикой любого ракетного двигателя. Чем больше удельная тяга, т. е. чем большую тягу создает каждый килограмм газа, вытекающего в секунду из двигателя, тем совершеннее двигатель.

В современных ракетных двигателях скорость истечения колеблется от 1500 до 2500 м/сек, вследствие чего удельная тяга равна 150–250 кг сек/кг.

Какими же способами можно увеличить скорость истечения и вместе с нею удельную тягу проектируемого ракетного двигателя?

Скорость истечения газов из двигателя зависит от топлива, давления газов в двигателе и его конструкции.

Влияние топлива на скорость истечения сказывается в основном в том, что скорость истечения тем больше, чем больше теплотворная способность топлива, т. е. тепло, которое выделяет при сгорании каждый килограмм топлива.

Чтобы отчетливее представить себе влияние на скорость истечения теплотворной способности топлива, попробуем повнимательнее присмотреться к явлениям, происходящим в любом ракетном двигателе, т. е. к рабочему процессу двигателя.

Пусть в двигателе произошла химическая реакция (будем считать для определенности — сгорание), в результате которой выделилось какое-то количество тепла.

Вследствие этого газообразные продукты реакции — пары углекислоты, пары воды, азот и др. — сильно нагреваются, так что температура их достигает 2500 °C и более. Мы знаем из физики, что температура газа есть мера скорости движения его молекул; когда газ очень нагрет, то молекулы его движутся с очень большими скоростями. Однако непосредственно эту скорость движения молекул газа использовать для создания реактивной тяги нельзя, потому что молекулы внутри двигателя движутся беспорядочно, неорганизованно, во всех направлениях; имеет место так называемое тепловое движение молекул. Каждая молекула, отражаясь от стенок двигателя, создает, конечно, микроскопическую реактивную силу, но суммарная равнодействующая — результат бесчисленного множества таких молекулярных ударов, равна нулю. Благодаря хаотичности движения молекул давление на все стенки двигателя одинаково и никакого реактивного эффекта не получается.

Чтобы создать реактивную силу, необходимо обеспечить упорядоченное, организованное истечение молекул газа из двигателя в одном направлении; тогда реактивный эффект всех вытекающих молекул суммируется, давая в результате нужную нам реактивную силу. Поэтому всякий ракетный двигатель по идее представляет собой машину для извержения молекул газа с максимально возможной скоростью в одном, общем для всех молекул, направлении, следовательно, машину для преобразования химической энергии топлива сначала в тепловую энергию беспорядочного движения молекул, а затем в скоростную (кинетическую) энергию их упорядоченного истечения из двигателя.

Таким образом первая часть рабочего процесса ракетного двигателя заключается в преобразовании химической энергии топлива в тепловую. Это преобразование осуществляется в ходе химической реакции внутри двигателя, в той его части, которую называют камерой сгорания, и происходит обычно при постоянном давлении.

Вторая часть рабочего процесса двигателя заключается в преобразовании тепловой энергии хаотического движения молекул в скоростную энергию их организованного истечения, т. е. в скоростную энергию реактивной струи газов, вытекающих из двигателя. Это преобразование осуществляется в процессе расширения газов от давления, имеющего место в камере сгорания двигателя, до атмосферного давления, т. е. до давления на выходе из двигателя, и обычно происходит в той его части, которая носит название сопла.

В современных ракетных двигателях указанный выше рабочий процесс происходит непрерывно, хотя возможны двигатели прерывного действия, в которых подача топлива в камеру сгорания и все последующие процессы происходят периодически.

Таким образом общим результатом рабочего процесса ракетного двигателя является преобразование химической энергии топлива в скоростную энергию струи газов, вытекающих из сопла в атмосферу. Однако при этом далеко не вся химическая энергия топлива (теплотворная способность) переходит в скоростную энергию струи, а только определенная часть ее. Чем совершеннее рабочий процесс, тем больше эта полезно используемая часть теплотворной способности топлива. В современных; ракетных двигателях в скоростную энергию струи газов переходит меньше половины тепла, заключенного в топливе[2]. Большая часть (до 2/3) этого тепла представляет собой потери рабочего процесса. Часть тепла теряется из-за неполного сгорания топлива, а другая, большая, теряется вместе с газами, выходящими из двигателя, так как их температура очень высока (1000–1500 °C). Уменьшение этих потерь рабочего процесса приводит к увеличению скорости истечения и, следовательно, увеличению тяги. Однако, как учит термодинамика — наука о преобразовании тепла в работу, — все тепло не может перейти в скоростную энергию газов. Некоторая часть этого тепла представляет собой неизбежные потери.

Теперь ясно, как теплотворная способность топлива влияет на скорость истечения. Чем больше теплотворная способность, тем больше тепловой энергии, при данной степени совершенства рабочего процесса двигателя, переходит в скоростную энергию газов, т. е. тем больше скорость истечения. И физически очевидно, что чем больше скорость теплового движения молекул после сгорания, тем больше и скорость истечения газов из двигателя.

С другой стороны, чем совершеннее рабочий процесс двигателя, тем также больше скорость истечения. Поэтому, например, более удачная конструкция двигателя, в частности, сопла, позволяющая лучше организовать истечение, т. е. добиться, чтобы скорости молекул газа на выходе из двигателя имели одинаковое направление и были большими по величине, также приводит к увеличению тяги.

Такое же влияние оказывает давление газов в камере сгорания двигателя. Чем больше это давление по сравнению с атмосферным, т. е. с давлением газов на выходе из двигателя, тем большая доля тепла переходит в скоростную энергию газов и поэтому больше скорость истечения и тяга двигателя, рассчитанного на это увеличенное давление.

Из всех внешних условий (скорость полета, состояние атмосферы и др.) только атмосферное давление оказывает некоторое, да и то небольшое, влияние на рабочий процесс ракетного двигателя. Эта независимость рабочего процесса от внешних условий является важным свойством ракетного двигателя. Благодаря этому свойству скорость истечения и секундный расход газов, а следовательно, и тяга ракетного двигателя, также остаются постоянными при изменении внешних условий.

Только при изменении атмосферного давления, например с изменением высоты полета, тяга несколько изменяется — с увеличением высоты тяга растет.

Особенно важным является то, что тяга остается постоянной при изменении скорости полета.

Мощность ракетного двигателя

Мощность, развиваемая двигателем, т. е. механическая работа, совершаемая им в единицу времени (секунду), является важнейшей характеристикой любого двигателя. Это и естественно, если иметь в виду, что именно совершение этой механической работы за счет израсходования определенного количества энергии другого вида — тепловой, электрической или еще какой-либо — и является назначением всякого двигателя. В соответствии с этим двигатели подразделяются на электрические, тепловые и т. д.

Обычно мощность, развиваемая каким-либо двигателем, может быть использована самыми разнообразными способами. Для этого вал двигателя связывают с тем или иным потребителем механической работы. Так, например, поршневой двигатель внутреннего сгорания может быть установлен на электростанции и вращать ротор динамомашины, тогда мощность двигателя будет преобразовываться в электрическую энергию; он может вращать трансмиссию в цехе и приводить таким образом в движение станки; может быть установлен на автомобиле для привода его ведущих колес; наконец, может вращать пропеллер самолета и т. д. Во всех этих случаях мощность двигателя будет неизменной, она будет только по-разному расходоваться. В частности, для нас очень важно, что мощность такого двигателя, установленного, допустим, на самолете, будет также одинаковой, вне зависимости от того, неподвижен ли самолет, стоящий на аэродроме, или летит со скоростью в сотни километров в час.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*