Юрий Гуревич - Загадка булатного узора
Появление сравнительно дешевых автомобилей из прочных и легких композитов — дело недалекого будущего. Получение и применение композиционных материалов в промышленности развивается быстрыми темпами. Так, первый высокопрочный композиционный материал, армированный нитевидными кристаллами, был получен в 1961 году, а в 1975 году такие композиции уже применялись в газотурбинных двигателях, корпусах глубоководных аппаратов в качестве пропитанных тканей, тросов, кабелей и других изделий. Есть все основания надеяться, что скоро композиты будут армировать волокнами с пределом прочности 7000–15000 МПа, а промышленность в достаточно большом количестве будет производить дешевые композиционные материалы на их основе. Итак, будущее за материалами со структурой типа булата.
Сварка по-дамасски
При изготовлении булата и дамасской стали большую роль играли процессы диффузии (перемещения) углерода из жидких, полужидких или твердых масс высокоуглеродистой стали в частицы малоуглеродистого железа, обеспечивающие сварку этих разнородных материалов. Сегодня подобные процессы называют диффузионной сваркой.
Можно ли приварить к стали стекло? Конечно, традиционные способы сварки не могут обеспечить соединение разнородных материалов: металл и неметаллический материал для них несовместимы. Преодолеть барьер такой несовместимости помог сравнительно недавно открытый в СССР Н. Ф. Казаковым способ диффузионного соединения материалов в вакууме и газовых средах. В последние годы диффузионная сварка нашла широкое применение при соединении различных металлов и сплавов между собой и с неметаллическими материалами, в том числе и со стеклом.
Современный процесс диффузионной сварки заключается в следующем. Две детали помещают в вакуумную камеру специальной установки и располагают так, чтобы их свариваемые поверхности хорошо стыковались. Для этой цели стыкующиеся поверхности предварительно шлифуются, после чего обезжириваются каким-либо растворителем. В процессе сварки детали сжимают при помощи гидравлического устройства. Величина прилагаемого давления должна быть достаточной, чтобы в результате деформации поверхности соединяемых деталей все пустоты в области стыка заполнялись свариваемыми материалами. После сжатия в вакуумной камере повышают температуру. Температура сварки для однородных металлов составляет 0,5–0,7 температуры их плавления. При соединении разнородных материалов температура несколько ниже.
Тесный контакт свариваемых поверхностей и исключение их окисления обеспечивают взаимную диффузию атомов контактирующих материалов. Сварочное соединение образуется в результате диффузии атомов через поверхность стыка как в твердом, так и в жидком состоянии. Примечательно, что если процесс соединения протекает при наличии жидкой фазы, то потребность в давлении отпадает, благодаря тому что происходит предварительное смачивание соединяемых поверхностей жидкой пленкой. Таким образом, в последнем случае способ диффузионной сварки повторяет почти в точности, конечно, на современном научном техническом уровне древние приемы, обеспечивающие высокое качество булату.
Под руководством Н. Ф. Казакова разработаны промышленные методы диффузионной сварки разнообразных металлов и неметаллических материалов. Металлы сваривают со стеклом, керамикой, графитом, полупроводниками и другими неметаллами. Диффузионная сварка обеспечивает создание конструкций, в которых соединения обладают новыми свойствами и прочностью, превышающей прочности исходных материалов. Она делает возможным образование таких форм и соединений, которые не могли быть изготовлены ранее известными способами. Недаром разработанный в Советском Союзе способ диффузионной сварки в вакууме и оборудование для нее запатентованы в США, Японии и ряде стран Западной Европы.
Итак, диффузионная сварка в вакууме или защитном инертном газе обеспечивает прочное соединение между металлами и сплавами. В древности не умели создавать вакуум и не знали газовых защитных сред. Поэтому древние мастера при изготовлении сварочных булатов для предохранения от окисления свариваемых поверхностей пользовались специальными флюсами. Этот факт натолкнул нас на идею, что возможно диффузионное соединение металлов и сплавов на воздухе без применения вакуумного оборудования — при использовании для растворения адсорбированных на свариваемых поверхностях оксидов пленки жидкого флюса (шлака).
Состав флюса был подобран так, чтобы температура его плавления была на 100–200 °C ниже температуры сварки. Кроме того, жидкий флюс (окисный расплав) растворял оксиды железа и легирующих элементов и легко выдавливался сварочными поверхностями при заданном давлении.
Процесс сварки производился следующим образом: свариваемые поверхности двух образцов шлифовались и обезжиривались, после чего они помещались в специальную установку, где осуществлялось обволакивание их пленками жидкого флюса под необходимым давлением. Полученные соединения стали 45 и чугуна, стали 45 и нержавеющей стали, стали 45 и быстрорежущей стали оказались достаточно прочными. Прочностные испытания образцов под действием ударной нагрузки показали, что разрушение происходит не по сварному шву. Металлографическим анализом установлено: диффузия углерода и легирующих элементов обеспечивает формирование прочного сварного соединения. Таким образом, древний метод диффузионной сварки, использовавшийся дамасскими кузнецами, нашел применение в современной технике.
От крицы к крице
Каждый знает, что без генератора двигатель автомобиля работать не может. Ни один генератор не будет работать без медно-графитовых щеток, которые забирают электрический ток с коллектора электромашины.
Сегодня изготовление медно-графитовой щетки не является проблемой, однако в процессе создания этого материала ученые столкнулись с немалыми трудностями. Дело в том, что графит не растворяется в меди, и поэтому получить этот материал традиционным методом сплавления невозможно. Можно, правда, расплавить медь и путем интенсивного перемешивания в ней порошка графита создать медно-графитную эмульсию. Если такая эмульсия будет кристаллизоваться (затвердевать) в условиях невесомости (например, на космическом корабле), то ее состав после затвердевания получится однородным. Изготовленный таким образом материал мог бы применяться для медно-графитовых щеток. Но сегодня такая «космическая» технология является, конечно, неприемлемой для промышленности. В условиях земного тяготения легкие частицы графита не распределяются равномерно в меди, обладающей значительным удельным весом. Поэтому сплавлением получать однородный медно-графитовый материал практически невозможно.
Как же ученые решили эту достаточно сложную задачу? Они нашли способ производства медно-графитных щеток, как две капли воды похожий на старинный способ получения… сварочных булатов.
Есть сведения, что в Х веке арабы применяли такую технологию для изготовления клинков из сварочного булата: из прокованных железных криц получали опилки, которые слегка окисляли, сваривали горячей ковкой и выжимали заготовку для клинка. Аналогичный способ производства мечей применялся и древними германцами. Стальной порошок перед сваркой подмешивался в корм птицам и пропускался через их пищеварительный тракт. Процесс пищеварения способствовал равномерному окислению порошка, а взаимодействие с птичьим пометом, содержащим углеродно-азотистые органические соединения, приводило к его цементации и азотированию. Полученный ковкой и сваркой такого порошка сварочный булат обладал высокими свойствами, поскольку частицы железного порошка, из которых он был «спечен», имели твердые, изностойкие карбидные или нитридные оболочки и пластичные, вязкие сердцевины.
Так вот, медно-графитные щетки приготовляются подобным образом. Сначала тщательно смешивают порошки меди и графита, затем путем прессования в специальных пресс-формах готовят прессовки из полученной смеси и спекают их при высокой температуре в печах с нейтральной или восстановительной атмосферой. В наше время подобные методы получения металлических сплавов и других материалов относят к порошковой металлургии.
Порошковая металлургия как искусство получения губчатого металла, металлических порошков и изделий из них появилась в глубокой древности. Порошки золота, меди и бронзы применяли как краски и использовали для декоративных целей в керамике и живописи. Ювелирные изделия, полученные спеканием засыпанных в соответствующие формы порошков золота и серебра, встречаются среди сокровищ египетских фараонов, вавилонских царей и древних инков. В дальнейшем этот способ получения металлических изделий был практически забыт.