KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Техническая литература » Сергей Семиков - Баллистическая теория Ритца и картина мироздания

Сергей Семиков - Баллистическая теория Ритца и картина мироздания

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Сергей Семиков, "Баллистическая теория Ритца и картина мироздания" бесплатно, без регистрации.
Перейти на страницу:

Что же представляет собой масса, и какова природа гравитации? В настоящее время считают надёжно доказанным, что скорость распространения гравитации равна скорости света. Уже одно это наводит на мысль, что гравитация имеет электромагнитную природу, что её, подобно электрическому воздействию, переносят реоны, источаемые зарядами со скоростью света. Именно Ритц был первым, кто предположил, что скорость распространения гравитации равна скорости света и обосновал предположение о том, что она создаётся электродинамическими взаимодействиями всех зарядов тела [8]. При этом Ритц опирается на следующую интересную идею физика И. Цёлльнера. Известно, что в каждом теле положительных и отрицательных зарядов точно поровну, и потому силы электрического притяжения и отталкивания между двумя телами должны уравновешивать друг друга. Но что, если сила притяжения двух разноимённых зарядов слегка превосходит силу отталкивания двух таких же по величине, но одноимённых? Тогда суммарная сила взаимодействия между всеми зарядами двух тел будет притягивать, сближать их. Эта не скомпенсированная электрическая сила и будет силой тяготения [106].

Как возможна такая асимметрия, показывает реонная модель взаимодействия. Рассмотрим для начала два одноимённых заряда. Пусть один электрон "стреляет" реонами в другой, тем самым отталкивая его. Реон массой m, попав в электрон массой M и будучи поглощён им, передаёт электрону свой импульс mc. После удара электрон приобретёт скорость V1 и массу M+m, причём его импульс (M+m)v=mc, откуда V1=mc/(M+m). Если же заряды разноимённые, то они, как было показано, должны и массы иметь разного знака, и реоны испускать соответствующие. После поглощения реона с антимассой (-m) масса электрона станет M-m, а, значит, он приобретёт скорость V2=mc/(M-m), превышающую V1. Иными словами, действие электрического притяжения и впрямь чуть больше действия отталкивания (Рис. 43).


Рис. 43. Поглощая реон и антиреон, электрон приобретает скорость v.


В итоге, две нейтральные системы, состоящие каждая из электрона и позитрона, после взаимообмена реонами станут сближаться со скоростью v=V2—V1=2cm2/M2 (при условии, что реон много легче электрона). Другими словами, такие нейтральные системы будут притягиваться (Рис. 44). И точно так же должны притягиваться любые два тела, состоящие из атомов, то есть, в конечном счёте, из отрицательных электронов и положительных протонов (или позитронов, § 3.9). Причём, сила притяжения будет пропорциональна числу элементарных зарядов первого и второго тела, то есть, в конечном счёте, массам этих тел. Если причина тяготения в этом, то отсюда легко выразить массу реона. Мы выяснили, что один электрон придаёт другому, с каждым попаданием реона, скорость V=cm/M (с учётом малости m). В то же время, в двух нейтральных системах "электрон-позитрон" каждый реон в среднем сообщает системе скорость v= cm2/M2. То есть, оказываемое одним реоном электрическое воздействие больше гравитационного в V/v= M/m раз, — во столько же, во сколько электрон тяжелее реона. Поскольку электрическое взаимодействие F двух электронов сильней гравитационного G в 1042 раз, то примерно столько реонов должен содержать один электрон. Интересно, что к тому же выводу, но на основе иных соображений пришёл ещё в 1991 г. В.С. Околотин.


Рис. 44. Сумма элементарных сил F электровзаимодействия зарядов двух тел даёт силу тяготения G=FmR/me, либо по другому механизму G=F4Δ2/r2.


Впрочем, если учесть, что масса реонов, вероятно, ещё меньше, то основная причина гравитации не в этом. Возможно, главная причина асимметрии элементарных сил притяжения и отталкивания зарядов состоит в асимметрии свойств самих элементарных зарядов — электронов и позитронов, из которых, как увидим, сложены атомы и тела (§ 3.9). Считается, что свойства этих частиц полностью симметричны: электрон и позитрон похожи как близнецы, один — это зеркальное отображение другого. А, потому, все их характеристики: радиус, масса, заряд, спин — одинаковы, с точностью до знака. Но, видно, есть всё же ничтожная разница, которая и ведёт к неравноправию электронов и позитронов, суть которого в том, что последних почти нет в свободном состоянии (§ 3.15). Проще всего допустить небольшое различие их радиусов и частот испускания ими частиц (реонов и ареонов). Пусть радиус электрона r, и испускает он в единицу времени N реонов. А радиус позитрона чуть больше R=r+Δ, и испускает он ежесекундно n ареонов. Сила F воздействия первого заряда на второй пропорциональна числу испускаемых первым частиц на сечение (квадрат радиуса) второго (Рис. 6 и Рис. 45). Всего четыре разных силы:

1) сила отталкивания электрона другим электроном F1=kNr2;

2) сила отталкивания позитрона другим позитроном F2=knR2;

3) сила притяжения электрона позитроном F3=knr2;

4) сила притяжения позитрона электроном F4=kNR2.

Рис. 45. Небольшое различие сил взаимодействия зарядов вызвано разницей их размеров и числа испускаемых частиц.


Очевидно, силы отталкивания одноимённых зарядов F1=F2=F. Это необходимо для приближённого баланса сил в макромире и для равенства инертных масс электрона и позитрона. Ведь, по гипотезе Ритца, сила инерции — это, как покажем чуть ниже, — сила воздействия заряда самого на себя. Тогда

Nr2=nR2

и

N=n(R/r)2=n(1+2Δ/r+Δ2/r2).

В итоге, с учётом малости Δ<<r получим:

F1= F2= knr2(1+2Δ/r+Δ2/r2),

F3= knr2,

F4=knr2(1+4Δ/r+6Δ2/r2).

Значит, две нейтральные системы, каждая из электрона и позитрона притягиваются с силой

G=F3+F4—F1—F2=4knΔ2 (Рис. 44).

То есть силы электрического притяжения в среднем и впрямь чуть превосходят силы отталкивания. Поскольку Δ<<r, сила тяготения G много меньше силы F взаимодействия элементарных зарядов:

G/F=4knΔ2/knr2=4Δ2/r2.

Известно, что G/F=10–42. Значит, нужная сила тяготения возникнет уже при Δ/r=10–21, то есть, — при ничтожной разнице Δ размеров электрона и позитрона. Конечно, возможны и другие механизмы гравитационного воздействия от неравенства элементарных сил электрического притяжения и отталкивания, в том числе такие, которые допускают идеальную симметрию частиц и античастиц, точную эквивалентность характеристик и размеров электронов и позитронов (§ 3.20).

В любом случае, ясно, что причина неравенства сил заключена во взаимодействии частиц материи и антиматерии, обладающих противоположными зарядами. Это и позволяет объяснить на базе БТР магнитные и гравитационные эффекты как частные проявления электрических. И магнетизм, и гравитация сводятся к электричеству. Стоит лишь принять гипотезу Цёлльнера, по которой электрическое взаимодействие элементарных зарядов двух тел (электронов и ядер) порождает гравитационное, если притяжение двух разноимённых зарядов на ничтожную величину превосходит отталкивание одноимённых [106]. Становится понятной причина равенства скорости распространения гравитации и света, если и то, и другое переносят реоны. Также гипотеза Цёлльнера объясняет убывание силы тяготения с расстоянием R, как в законе Кулона F~1/R2, и рост силы с массой. Ведь, чем тяжелей тело, тем больше в нём атомов, зарядов и элементарных сил, дающих в сумме силу тяготения. Наконец, ясно, почему силы тяготения гораздо меньше электрических: гравитационное воздействие, подобно магнитному, возникает как ничтожный избыток электрической силы. На базе БТР уже можно строить единую теорию поля, которую в течение последних 30-ти лет своей жизни бесплодно пытался создать А. Эйнштейн (§ 3.16). В своей работе 1908 г. Ритц, вплотную подойдя к идее такого объединения, сумел объяснить и некоторые релятивистские гравитационные эффекты. В самом деле, если гравитация имеет электрическую природу, то к ней применимы законы электродинамики. И Ритц их успешно применил, задолго до Эйнштейна объяснив вековое смещение перигелия Меркурия и предсказав в 1908 г. величину смещения для других планет по выведенной им формуле, лишь семь лет спустя, — в 1915 г., найденной А. Эйнштейном (§ 2.3).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*