Виктор Финкель - Портрет трещины
опасны. Сложнее переход трещины из зерна в зерно стали, создающий мелкую шероховатость раскола. Чувствительна трещина и к структурным составляющим. Здесь, однако, спасительно то, что с ростом скорости трещина становится всеядной и при 1000 м/с способна одинаково
успешно расти и по ферриту, и по перлиту. При таких скоростях трещина становится хрупкой и режет любые компоненты стали.
Ухудшают поверхность раскола дислокации, межзе-ренные границы и другие дефекты в стали. Однако с этим, пожалуй, ничего не поделаешь – это естественные ограничения метода. Можно считать, что самые мельчайшие неровности на сколе проката не могут быть меньше размера зерна в стали.
Очень важно вести холодную ломку металла так, чтобы не создавать в нем серьезной пластической деформации. Важно это только для того, чтобы металл можно было ломать легко, без больших затрат энергии. Нельзя допускать, чтобы деформация меняла структуру стали. Между тем опасность такого рода всегда есть, когда деформация велика. При этом могут возникнуть системы из многих микро- и макротрещин.
И если трещин много, то разрушение идет либо одновременно из многих центров, либо осложняется вследствие взаимодействия основной разделяющей магистральной трещины с другими. И в том, и в другом случае поверхность разрушения получается ущербной. Во избежание этого магистральной трещине намеренно дают «фору»; на прокат заранее наносят концентрацию напряжений. Он обеспечивает зарождение трещины там, где нужно, и облегчает ее подрастание до критических размеров. При этом другие трещины заранее обречены: они обязательно «проиграют» магистральной.
Мы уже знаем, что трещина неустойчива. И побуждений для этого у нее достаточно. Здесь и влияние структуры, и поля напряжения, и ветвление, и разнообразные волновые процессы и многое, многое другое.
Поэтому, если мы хотим использовать трещину в качестве инструмента и притом надежного, нужно создать такие условия, чтобы лишить ее подобных побуждений. Это совсем не исключает всех упомянутых ранее, часто случайных причин нестабильности разрушения. Нет, это означает лишь, что совершенно необходимо создать условия для стабилизации растущей микроскопической трещины, для чего есть два способа. Первый предполагает создание некоторого внешне наведенного макроскопического поля над всеми случайными упругими полями и эпизодами, которое, грубо говоря, подавляет все другие поля и обеспечивает однородное напряженное состо-
яние во всем районе распространяющегося разрушения.
Второй способ деликатнее. С его помощью не нужно накладывать эдакое суперполе на весь разрушаемый металл. Это ведь далеко не всегда удобно. Зачем деформировать весь массив, когда трещина пойдет лишь по какому-то небольшому его району. Не лучше ли в этом случае создать лишь узкий деформированный коридор, своего рода «волновод», обеспечивающий продвижение трещины в необходимом направлении и по определенной траектории. Такой метод потребует меньше энергии, а результаты не изменятся. Какие же есть фундаментальные идеи по переводу неуправляемой трещины-разбойницы в русло контролируемого и дисциплинированного труженика? Это напоминает мне известную шутливую рецензию: «Книга содержит интересные идеи. Обе идеи…» В нашем случае ситуация еще похлеще.
Идея, в сущности, одна. Предложена она была учеными Дж. Бенбоу и Ф. Реслером и заключается в следующем. Приложим вдоль направления распространения трещины сжимающие напряжения. Поскольку трещина растет под действием растягивающих напряжений, нормальных к ее берегам, сжимающие напряжения не мешают ей двигаться в нужном направлении. Но вдруг трещина «решила» проявить свойственную ей вздорность и повернула в сторону. Вот тут-то сжимающие напря-
жения и проявляют себя. Ведь при повороте трещина подставила свой фланг и напряжения попросту поглотили ее-в любом направлении, кроме магистрального, двигаться, таким образом, трещина не может. Что-то вроде знака ГАИ, запрещающего поворот. Но в отличие от знака сжимающие напряжения являются и физическим препятствием. В этих условиях трещина вынуждена подчиниться дисциплине. Надо лишь, чтобы приложенное поле сжатия наверняка превосходило любые другие упругие поля, способные «подбивать» трещину на «бесчинства».
Вот и пришло время рассказать о том, как воспользоваться положительным свойством трещины и с ее помощью разрезать продукцию металлургического производства – прокат на мерные заготовки. Ведь именно из них на машиностроительных заводах изготавливают реальные детали.
Займемся приложением идеи Бенбоу и Реслера к различным случаям разделки металла. Допустим, что мы хотим разломать сталь изгибом. Если не принять специальных мер, то трещина, стартуя, из надреза на растянутой стороне образца двинется в сжатую его часть.
Здесь-то и пойдут осложнения. Трещина начнет вилять, то есть будет стремиться отойти от магистрального направления. Да что там сталь! Сломайте сантиметровую деревянную палочку, карандаш, наконец. Из области растяжения трещина пойдет хорошо, а в конце, в районе сжатия, древесина расслоится параллельно своей оси. От монолитной трещины ничего не останется. Это и есть работа сжимающих напряжений, неизбежно возникающих при изгибе стержня. Чтобы их подавить, давайте обожжем стержень по его внешней поверхности. Для этого используем механическое обжатие. Его роль двояка. Во-первых, сжимающие напряжения, которые возникнут по всему сечению образца, наложат «табу» на любые «финты» трещины и заставят ее идти точно по заданному направлению. Во-вторых, проявится еще одна счастливая особенность такого напряженного состояния. У вас в кулаке пластилин. При сжатии он будет выдавливаться с торцов кулака. Сталь из кулака не потечет. Но при внешнем обжиме в ней возникают растягивающие напряжения, стремящиеся разорвать образец по оси. Они сравнительно невелики, но все же содействуют разрушению и подталкивают трещину. Благодаря этому двойственному благоприятному воздействию внешнего обжатия на металлический образец его можно ломать обычным изгибом и получать при этом отличную поверхность излома, содержащую лишь мелкие шероховатости. Это оказалось возможным благодаря победе над трещиной.
Как на практике осуществить подобное стабилизирующее обжатие? Это можно сделать чисто механическим путем. Но есть и другие способы. Например, перед разрушением изгибом металл на короткое время охлаждают в жидком азоте. Тогда его поверхность сжимается. Однако сердцевина металла, сохраняющая исходную температуру, этому препятствует. В итоге поверхность образца окажется растянутой, а внутренние слои – сжатыми. Растягивающие напряжения снаружи очень удобны, потому что способствуют зарождению исходной трещины. В то же время сжимающие напряжения в теле образца выполняют сторожевые функции, стабилизирующие трещину. В итоге трещина и легко образуется, и ровно распространяется, оставляя отличную поверхность раз* реза.
Очень эффективна ломка металла гидростатическим обжатием. Принцип здесь тот же. Но реализуется он не-
много иначе. Средой, организующей и передающей давление, является жидкость – вода или масло. Специальный компрессор сжимает ее до относительно высокого давления в десятки тысяч атмосфер. В итоге металл оказывается в гидравлическом «кулаке». При этом возникают напряжения и стабилизирующие трещину, и разрывающие образец. Последние направлены точно по оси. Поэтому поверхность разрушения здесь получается идеальной. Если вы разрушаете плексиглас, она зеркальна. Если идет речь о металле, ее шероховатость не превышает размера зерна стали. Особенность этого метода- чрезвычайная легкость зарождения исходной трещины. Для этого достаточно сделать ничтожный надрез на поверхности металлического образца. Жидкость под давлением проникнет в мельчайшие поры и создаст дополнительное расклинивание, содействующее появлению трещины1.
Это очень многообещающий метод, но… японская пословица говорит, что кто не знает, чего он хочет, должен по крайней мере знать, чего от него хотят другие. Мы хотим разработать эффективные методы резания металла. И другие этого хотят. Ведь не случайно же говорят, что дивиденды предприятий сидят на острие резца? Вместе с тем разрабатываемые методы должны быть не только эффективными, но и более простыми, нежели традиционное резание. В связи с этим надо указать на одно очень слабое место гидростатического обжатия. Ведь необходимо создать вполне надежное уплотнение между резервуаром с жидкостью под высоким давлением и поверхностью образца. Между тем образец этот – продукт прокатного производства с поверхностью очень неровной, да еще меняющейся от одного участка проката к другому. К сожалению, сегодня эта задача представляется невероятно сложной. Именно это и умаляет достоинства метода.