KnigaRead.com/

Павел Ощепков - Жизнь и мечта

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Павел Ощепков, "Жизнь и мечта" бесплатно, без регистрации.
Перейти на страницу:

Жизнь замечательного, разностороннего и бесстрашного ученого была трагически оборвана, но свет его разума будет всегда сиять человечеству.

Другой итальянский ученый, Галилео Галилей — астроном, физик и математик, также чуть было не поплатился жизнью за развитие гелиоцентрических («гелио» — солнце по-гречески) взглядов Коперника.

Галилей многое сделал для науки: он открыл закон инерции, изучал падение тел, движение маятника, первым в истории науки наблюдал с помощью изготовленной им самим зрительной трубы (телескопа) небесные светила.

153

Он обнаружил горы на Луне, открыл четыре спутника Юпитера, фазы Венеры, звездное строение Млечного Пути, пятна на Солнце я многое другое. В своей книге «Диалог о двух главнейших системах мира — Птолемеевой и Коперниковой» A632 г.) он уточнил и блестяще развил учение Коперника о движении Земли. А в конце концов, несмотря на все содеянное для человечества, он был в 1633 г. осужден римским католическим судом за вольнодумство и инакомыслие.

Под угрозой смерти и страшной кары, которая падет на его семью, Галилео Галилей отказался на суде от своего учения. Однако, выходя из зала суда, он бросил слова, ставшие крылатыми: «А все-таки она вертится!»

Тем самым он дал понять, что сила, а не разум заставила его отказаться от своих убеждений. Разум его всегда оставался на стороне прогрессивного учения. Он знал, что защищает правое дело, и это придавало ему сил.

Вот вам и факты — всеми наблюдаемые и всеми подтверждаемые. Сколько жертв пришлось принести человечеству, чтобы доказать ошибочность подобных «фактов»!


При этом надо помнить, что у тех, кто первым выступил против общепризнанных взглядов на строение солнечной системы (Николай Коперник, Джордано Бруно), не было никаких других фактов, кроме тех, что наблюдались всеми. Как и все, они видели ту же картину небесных светил, какую до них видели все люди. Но обобщение и анализ результатов наблюдений позволили им прийти к совершенно иным, противоположным взглядам.

Не будь этих великих мучеников науки, может быть, еще на столетие задержалось бы то гигантское развитие естествознания в области астрономии, которое мы сейчас наблюдаем.

Только глубокий анализ, казалось бы, бесспорных фактов, только нахождение истинной взаимосвязи между ними позволило первооткрывателям правильно оценить эти факты и найти новое им объяснение. Это было величайшее, дерзновенное по тому времени открытие.

Не менее поразительно и то открытие людей глубокой древности, которое позволило двигаться силой ветра против ветра. Подумать только, какой переворот был совершен этим, если даже сделан он был не сознательно, случайно.

154

И на заре человечества, как сейчас, ветер гнал волны на воде в ту сторону, куда дует. Все видели также, что случайно упавшее в воду дерево или любой другой плавучий предмет под влиянием ветра движется по направлению ветра. Заметив это, человек научился пользоваться силой ветра для того, чтобы переправляться на бревнах, плотах или первобытных пирогах с одного острова на другой. На какой-то ступени своего развития он научился (пользоваться и парусом, увеличивающим скорость движения плавучих средств. Но сколько тысячелетий прошло, прежде чем человек дошел до сознания, что с помощью ветра можно двигаться напротив ветра.

Любой рыбак или спортсмен теперь пользуется этим открытием, даже не задумываясь о том, что когда-то оно казалось абсурдным.

А жаль, очень жаль, что мы редко об этом задумываемся. Возможность двигаться с помощью силы против той же силы таит в себе глубокий смысл. В объяснении этого факта все еще нет единого мнения. Большинство сходится на том, что силой можно воспользоваться для движения против этой же силы только в том случае, когда мы имеем дело с ветром и водной поверхностью.

А разве движение воды относительно дна реки не представляет собой тот же случай взаимодействия двух сред? А движение света относительно гравитационного поля? Все это примеры одного и того же порядка.

ОТ ГАЛЬВАНИ ДО ВОЛЬТА

Продолжая разговор о различном отношении людей (прежде всего ученых) к неоспоримым, казалось бы, фактам, хочется остановиться еще на нескольких примерах. Вспомним открытие первых искусственных источников электрического тока. Электричество пронизывает теперь всю нашу жизнь, а между тем не все знают, что первые опыты с источниками электрического тока были истолкованы ложно.

Итальянский -врач Луиджи Гальвани (1737—1798) первым наблюдал появление электричества при прикосновении разнородных металлов к телу лягушки. В 1791 г. он опубликовал работу по электрофизиологии, в которой подробно описал свои опыты. Сначала он наблюдал, как при разрядах от электростатической (электрофарной) машины происходит сокращение мышц лягушки.

155

Потом он решил проверить, не производят ли такое же действие естественные электрические разряды — молнии. С этой целью он при помощи медных крючков подвесил cвежепрепарировавные лапы лягушки на железную ограду балкона. Оказалось, что судорожные сокращения мускулов происходят и без молнии, т. е. без искры, стоит лишь лапе лягушки прикоснуться к железной ограде. Этими наблюдениями врач Гальвани сделал величайшее открытие в физике того времени, но ни он сам, ни его современники-физики не смогли правильно нанять и объяснить наблюдаемые ими факты.

В результате своих опытов Гальвани пришел к ложному выводу, что источникам электричества в этом случае является живая ткань лягушки. На этом основании он создал теорию «животного электричества».

Теперь-то мы знаем, что в биологических тканях действительно протекают электрические процессы. Но в упомянутых опытах Гальвани речь шла совсем не об этом, не о тонких электрических процессах, протекающих в живой ткани, а о возникновении электричества при простом прикосновении разнородными металлами к препарированной (мертвой) лягушке.

Созданная Гальвани теория «животного электричества» вскоре стала общепризнанной и господствовала в науке длительное время, до тех пор, пока другой итальянский ученый (проживавший, правда, больше во Франции) не повторил эти опыты и не пришел на основании их к совершенно другому выводу. Этим ученым был Александр Вольта (1745—1827).

В своих мемуарах Вольта пишет, что он повторил опыты Гальвани и получил тот же самый результат, но пришел к заключению, что электричество содержится не в живой ткани, а в тех разнородных металлах, которыми Гальвани прикасался к препарированной лягушке.

Вольта установил, что электродами в опытах Гальвани служили медь и железо, а мышцы лягушки (вернее , их лимфа) [7] служили лишь промежуточной средой — электролитом. Поняв это, Вольта сумел сделать первый искусственный источник электрического тока — вольтов столб, собранный из последовательно соединенных одинаковых элементов, из которых каждый состоял из чередующихся медных и цинковых кружочков, проложенных суконными прокладками, смоченными в растворе кислоты или щелочи.

156

В память о заслугах того, кто первым наблюдал появление электрического тока между двумя металлами, соединенными жидкостью, Вольта назвал свои элементы гальваническими. Мы и сейчас пользуемся этим названием.

Изучая историю развития учения об электричестве, можно убедиться, что новая трактовка опытов Гальвани не без препятствий сменила старую, уже признанную.

Сам Гальвани резко выступал против «металлической», как он называл, теории электричества, созданной Вольта. Дело доходило даже до взаимных оскорблений и анонимных писем с угрозами. Такова была сила инерции уже принятого однажды понятия.

Победил, как мы знаем, Вольта. Он одержал победу потому, что его теория была более прогрессивной, хотя и не совсем точной с точки зрения современных представлений.

Теория «животного электричества» Гальвани не привела, как известно, ни к каким практическим результатам, а теория Вольта, позволила создать искусственные источники электрического тока и тем самым помогла сделать огромный шаг вперед по пути изучения электрических процессов. Теперь можно без преувеличения сказать, что, не будь в свое время созданы гальванические элементы, мы не имели бы столь развитой электротехники.

Во всей этой истории поучительно то, что два ученых, и не рядовых, а оставивших глубокий след своей деятельности и в других областях исследований, произвели один и тот же опыт, получили одни и те же результаты (т. е. один и тот же факт), но выводы из этих опытов они сделали совершенно различные. Теория первого была бесплодной и, как мы знаем теперь, неправильной, а теория второго стояла ближе к истине и потому позволила ее автору прийти к величайшему открытию своего времени. Если иметь в виду все последующие работы по электричеству, включая опыты Эрстеда и Фарадея, то легко прийти к выводу, что в первой гальванической батарее — в вольтовом столбе — уже были заложены основы современных электростанций.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*